PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Cryogenic Treatment on Wear Resistance and Microstructure of 42CrMo Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, thermo-mechanically treated 42CrMo steel was subjected to cryogenic treatment conducted by means of orthogonal design method, followed by low-temperature tempering to investigate the effect of different parameters of cryogenic treatment on wear resistance of 42CrMo steel and to optimize parameters of cryogenic treatment for improving wear resistance. The results of hardness test and wear test show that cryogenic treatment significantly improves wear resistance with marginal changes in coefficient of friction and hardness. Specifically, cryogenic temperature has the largest impact on wear resistance of 42CrMo steel, holding time has medium impact, and the parameter of treatment cycles has the least impact. The optimum parameters of cryogenic treatment are -196°C for 12 hours with one cycle for improving wear resistance. The results of scanning electron microscopy (SEM) and X-ray diffractometry (XRD) analysis indicate that marginal changes in hardness and coefficient of friction may be owing to little amount of transformation of retained austenite, and the significant influence of cryogenic treatment on improving wear resistance of 42CrMo steel can be mainly attributed to segregation of carbon atoms promoted by cryogenic treatment resulting in more precipitation of carbides in subsequent tempering.
Twórcy
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, School of Mechanical Engineering, Taiyuan 030024, China
autor
  • Taiyuan University of Science and Technology, Jincheng School District, Jincheng 048011, China
Bibliografia
  • [1] G. Totten and R. Colas, Encyclopedia of Iron, Steel, and Their Alloys (Online Version), Boca Raton: CRC Press (2016).
  • [2] M. Cheng, Z. Wang, X.P. Qin, Experimental Study about the Effect of Heating Power of Spot Induction Hardening on Material Properties of 42CrMo, in: Advanced High Strength Steel and Press Hardening - Proceedings of the 3rd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2016), World Scientific (2017).
  • [3] Z.X. Zhao, Materials for Mechanical Engineering, Xidian University Press, Xi'an (2016) (in Chinese).
  • [4] M. Chanda (Ed.), Plastics Technology Handbook, CRC Press (2017).
  • [5] G. Hartwig (Ed.), Polymer Properties at Room and Cryogenic Temperatures, Springer Science & Business Media (2013).
  • [6] S. Narayanan, K. Gokul Kumar, K. Janardhan Redd, CAD/CAM Robotics and Factories of the Future: 22nd International Conference, 19th-22nd July 2006, Alpha Science Int'l Ltd. (2006).
  • [7] W. Chen, W. Wu, C. Li, J. Mater. Eng. Perform. 29, 10-22 (2020).
  • [8] K. Amini, A. Akhbarizadeh, S. Javadpour, Mater. Des. 54, 154-160 (2014).
  • [9] B. Kursuncu, H. Caliskan, S.Y. Guven, Int. J. Adv. Manuf. Technol. 97 (1-4), 467-479 (2018).
  • [10] D.A. College, Y. Zhu, Mater. Sci. Eng. A 722, 167-172 (2018).
  • [11] A. Palanisamy, T. Selvaraj, S. Sivasankaran, Arabian J. Sci. Eng. 43 (9), 4977-4990 (2018).
  • [12] K. Amini, A. Akhbarizadeh, S. Javadpour, Metall. Mater. Engineering 23 (1), 1-10 (2017).
  • [13] G. Prieto, J.E. Ipina, W.R. Tuckart, Mat. Sci. Eng. A-Struct. 605, 236-243 (2014).
  • [14] K. Amini, A. Akhbarizadeh, S. Javadpour, Metall. Res. Technol. 113 (6), 611-622 (2016).
  • [15] M.C.A. Dumasia, V.A. Kulkarni, M.K. Sonar, Int. Res. J. Eng. Technol. 04(07), 2402-2406 (2017).
  • [16] N.S. Kalsi, R. Sehgal, V.S. Sharma, Mater. Manuf. Processes 25 (10), 1077-1100 (2010).
  • [17] P. Jimbert, M. Iturrondobeitia, J. Ibarretxe, Met. 8 (12), 1038 (2018).
  • [18] S. Kumar, M. Nagaraj, N.K. Khedkar, Mater. Res. Expression 5 (11), 116525 (2018).
  • [19] A. Akhbarizadeh, S. Javadpour, K. Amini, Mater. Des. 45, 103-109 (2013).
  • [20] K. Amini, A. Akhbarizadeh, S. Javadpour, Mater. Des. 45, 316-322 (2013).
  • [21] K. Amini, A. Akhbarizadeh, S. Javadpour, Int. J. Miner. Metall. Mater. 19 (9), 795-799 (2012).
  • [22] D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng. A 527 (9), 2182-2193 (2010).
  • [23] D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng. A 527 (9), 2194-2206 (2010).
  • [24] T. Shinde. Surf. Eng. 1-9 (2020).
  • [25] J. Soleimany, H. Ghayour, K. Amini, Phys. Met. Metall. 120 (9), 888-897 (2019).
  • [26] B. Mokarian, K. Amini, H. Ghayour, Transactions of the IMF 97 (3), 121-128 (2019).
  • [27] A. Çiçek, F. Kara, T. Kıvak, J. Mater. Eng. Perform. 24 (11), 4431-4439 (2015).
  • [28] K. Amini, M. Negahbani, H.G.K. Amini, Metall. Ital. 24 (11), 4431-4439 (2015).
  • [29] M. Koneshlou, K.M. Asl, F. Khomamizadeh, Cryogenics 51 (1), 55-61 (2010).
  • [30] X.G. Yan, D.Y. Li, Wear 302 (1-2), 854-862 (2013).
  • [31] L. Bhaskar, D.S. Raj, Eng. Res. Express 2 (2), 025005 (2020).
  • [32] S. Kumar, M. Nagraj, A. Bongale, Arabian J. Sci. Eng. 43 (9), 4917-4929 (2018).
  • [33] J.J. Li, X.G. Yan, X.Y. Liang, Wear 376, 1112-1121 (2017).
  • [34] L.P. Singh, J. Singh, Mater. Test. 57 (4), 306-310 (2015).
  • [35] G. Prieto, W.R. Tuckart, J. Mater. Eng. Perform. 26 (11), 5262- 5271 (2017).
  • [36] I. Gunes, A. Cicek, K. Aslantas, Trans. Indian Inst. Met. 67 (6), 909-917 (2014).
  • [37] H. Paydar, K. Amini, A. Akhbarizadeh, Kovove Mater. 52, 163-169 (2014).
  • [38] R.S. Siva, D.M. Lal, P.K. Nair, Int. J. Miner. Metall. Mater. 21 (1), 46-51 (2014).
  • [39] R.S. Siva, M.A. Jaswin, D.M. Lal, Tribol. Trans. 55 (3), 387-393 (2012).
  • [40] M.A. Jaswin, D.M. Lal, A. Rajadurai, Tribol. Trans. 54 (3), 341-350 (2011).
  • [41] B. Li, C. Li, Y. Wang, Met. 8 (10), 808-820 (2018).
  • [42] K. Amini, A. Akhbarizadeh, A. Araghi, J. Balk. Tribol. Assoc. 22 (3), 2335-2345 (2016).
  • [43] P. Wach, A. Ciski, T. Babul, Arch. Metall. Mater. 64 (2) (2019).
  • [44] M. Sedlacek, B.S. Batic, D. Cesnik, Mater. Tehnol. 53 (4), 565-574 (2019).
  • [45] Y. Yao, Y. Zhou, Metals 8 (7), 502 (2018).
  • [46] M. Priyadarshini, A. Behera, C.K. Biswas, J. Braz. Soc. Mech. Sci. Eng. 42, 212 (2020).
  • [47] Fran Cverna (Ed.), Worldwide Guide to Equivalent Irons and Steels, ASM international, Geauga County (2006).
  • [48] D. Senthilkumar, I. Rajendran, Mater. Manuf. Process. 27 (5), 567-572 (2012).
  • [49] D. Senthilkumar, I. Rajendran, Int. J. Microstruct. Mater. Prop. 6 (5), 366-377 (2011). 135
  • [50] S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Technol. 186 (1-3), 298-303 (2007).
  • [51] I. Sahin, G. Hoke, H. Cinici, Mater. Tehnol. 53 (4), 489-494 (2019).
  • [52] P. Raja, R. Malayalamurthi, M. Sakthivel, Bull. Pol. Ac.: Tech. 67, 4 (2019).
  • [53] M. Arun, N. Arunkumar, R. Vijayaraj, Meas. 125, 687-693 (2018).
  • [54] J. Dossett, G.E. Totten, ASM Hand Book 4A: Steel Heat Treating Fundamentals and Process, ASM International, Geauga County (2013).
  • [55] S.S. Gill, J. Singh, R. Singh, J. Mater. Eng. Perform. 21 (7), 1320-1326 (2012).
  • [56] K. Krishnaiah, P. Shahabudeen, Applied design of experiments and Taguchi methods, PHI Learning Pvt. Ltd. (2012).
  • [57] Y.J. Ma, Y. Liu, B.B. Wu, Heat Treat. Met. 44 (01), 40-44 (2019). (in Chinese)
  • [58] J.C. Lindon, G.E. Tranter, D. Koppenaal, Encyclopedia of Spectroscopy and Spectrometry, Elsevier Science, London (2010).
  • [59] Marc De Graef, Michael E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press (2012).
  • [60] R.E. Dinnebier, S.J.L. Billinge, Powder Diffraction: Theory and Practice, Royal Society of Chemistr (2015).
  • [61] Greg Parker, Encyclopedia of Materials: Science and Technology, Science and technology (2001).
  • [62] Rigaku Corporation, Control Software of MiniFlex: MiniFlex Guidance Reference Manual.
  • [63] D. Das, A.K. Dutta, V. Toppo, Mater. Manuf. Processes 22 (4), 474-480 (2007).
  • [64] S. Li, N. Min, J. Li, Mater. Sci. Eng. A 575, 51-60 (2013).
  • [65] S. Li, X. Wu, Mater. Sci. Technol. 31 (15), 1867-1878 (2015).
  • [66] V.G. Gavriljuk, W. Theisen, V.V. Sirosh, Acta Mater. 61 (5), 1705-1715 (2013).
  • [67] A. Akhbarizadeh, A. Shafyei, M.A. Golozar, Mater. Des. 30 (8), 3259-3264 (2009).
  • [68] E. George. Totten (Ed.), Steel heat treatment: Metallurgy and Technologies, CRC press (2006).
  • [69] R. Joseph. Davis (Ed.), ASM Specialty Handbook: Tool Materials, ASM international (1995).
  • [70] N. Pillai, R. Karthikeyan, Effect of Deep Cryogenic Treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing (2018).
  • [71] D. Senthilkumar, I. Rajendran, M. Pellizzari, J. Mater. Process. Technol. 211 (3), 396-401 (2011).
  • [72] J. Sobotova, P. Jurci, I. Dlouhy, Mater. Sci. Eng. A 652, 192-204 (2016).
  • [73] D. Das, A.K. Dutta, K.K. Ray, Wear 266 (1-2), 297-309 (2009).
  • [74] D. Das, A.K. Dutta, K.K. Ray, Cryogenics 49 (5), 176-184 (2009).
  • [75] G. Krauss (Ed.), Steels: Processing, Structure, and Performance, ASM International (2015).
  • [76] S. Li, L. Deng, X. Wu, Cryogenics 50 (11-12), 754-758 (2010).
  • [77] S. Li, L. Deng, X. Wu, Mater. Sci. Eng. A 527 (29-30), 7950-7954 (2010).
  • [78] V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, Metall. Mater. Trans. A 45 (5), 2453-2465 (2014).
  • [79] Y. Xiao, W. Li, H.S. Zhao, Mater. Charact. 117, 84-90 (2016).
  • [80] X. Xie, X.C. Wu, N. Min, Acta Metall. Sinica 51 (3), 325-332 (2015) (in Chinese).
Uwagi
1. This work is supported by National Natural Science Foundation of China (Grant No. 51675363) and Ph.D. Startup Foundation of Taiyuan University of Science and Technology (No. 20182042)
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-752f4c60-68c7-4766-a3d2-c3c29a18795e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.