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Abstract 

Aeroelastic phenomena should be considered during the design phase of long span bridges. One of the aeroelastic 
problems is flutter, the dynamic instability that may cause structural failure at a wind speed called the flutter speed. 
The prediction of flutter speed of a bridge needs a thorough modelling of bridge stiffness, inertias, and especially its 
unsteady aerodynamic forces. The potential flow theory is not applicable to calculate unsteady aerodynamics of 
oscillating bridges due to their non-streamlined complex geometry, and the non-avoidable flow separation. For these 
reasons, a semi empirical model proposed by Scanlan is used to describe unsteady aerodynamic forces on an 
oscillating bridge deck. In this model, relation between unsteady aerodynamic forces and motion of the bridge is 
modelled using parameters known as flutter derivatives. The values of flutter derivatives can be identified from the 
free vibration responses of an elastic bridge at several wind-speeds. This paper presents wind tunnel tests and flutter 
derivatives identification of a sectional aeroelastic bridge model. Modified Ibrahim Time Domain method was applied 
to identify the eigenvalues and eigenvectors of the model at each wind speed, from which the flutter derivatives can be 
calculated. The results show that the measurement procedure is able produce flutter derivatives, which are in good 
agreement with those obtained by other researchers. 
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1. Introduction 
 

Study of bridge aeroelasticity is needed during the design phase of long span bridges. One 
phenomenon that should be considered is the flutter, an unstable self-excited vibration in which 
the structure extracts energy from the air stream. Below the critical speed, the motions of the 
structure are damped out, whereas above the critical speed, the motions are unstable since the 
damping of the system is negative. This phenomenon can lead to a catastrophic failure, such as the 
failure of Tacoma Narrows Bridge as shown in Fig. 1 [1, 2].  
 

 
Fig. 1. Flutter of Tacoma Narrow Bridge 
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Flutter phenomena can be investigated by using analytical, experimental, and numerical methods. 
For bridge decks with complex geometry, analytical and numerical methods lead to complex 
mathematical forms. Therefore, predictions of the flutter speed of the bridges should be verified 
using wind-tunnel tests, either for full bridge model or for partial model of the bridge [3, 4]. For 
preliminary study, the numerical analysis can be carried out by formulating the unsteady 
aerodynamic forces using experimental data. This paper presents the measurement of the unsteady 
aerodynamic coefficients, or the flutter derivatives, of a bridge deck sectional model.  
 
2. Theory 
 
2.1. Bridge Aeroelastic Model 
 

Figure 2 shows a model of an oscillating bridge sectional model in wind stream with c.g. at the 
middle position. The model is supported by linear and torsional spring, kh and k . The equation of 
motion of the model in the vertical and rotational motion, h (t) and (t) respectively is:  
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where L, M  are the aerodynamic force and moment working on the bridge deck. In aeroelastic 
instability analysis, only motion dependent aerodynamic forces are considered. The aerodynamic 
force and moment can be related to the motion of the bridge as follow [5]:  
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where:  – air density, U – mean wind velocity, B – chord,  – frequency, K = B  /U – reduced 
frequency and 1,...,4),(),( ** iKAKH ii : flutter derivatives. The flutter derivatives of a body that 
represents a thin plate can be obtained from the formula developed by Theodorsen [6]. For a bluff 
body, they are obtained from wind tunnel tests.  
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Fig. 2. Bridge deck sectional model and its displacement 

 
By substituting Eq. (2) into Eq. (1), and mathematically manipulating the result, a normalized 

aeroelastic equation of motion of the bridge model can be obtained: 

 0xKxCxI effeff , (3) 

where:  
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The parameters of the aeroelastic model can experimentally be determined. First, its free vibration 
responses at several wind speeds (including zero) are measured, from which the frequencies, 
dampings, and mode shapes of the model are identified. Then, the Ceff and Keff matrices are 
reconstructed. The flutter derivatives at a wind speed are calculated from the difference between 
Ceff and Keff at the wind speed to those without wind by as follow: 
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2.2 Identification of model dynamic characteristics 
 

The eigenvalues and eigenvectors of the model are identified from its free vibration response 
by using Modified Ibrahim Time Domain (MITD) method [7, 8], which is a recursive procedure 
based on the Ibrahim Time Domain (ITD) method [9].  
 
ITD Method 

Figure 3 illustrates the measured free vibrations data in the form of the vertical and the rotational 
displacements sampled with a time step t. Theoretically, the free vibration response can be modelled 
as the superposition of vibrations at two frequencies, each at its mode shape: 

 4
1
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m

t
mm

T meptthtx , (5) 

where: 
m – constants to satisfy the initial conditions,  

pm – vibration mode shapes,  
21ii mmmmmmm ba  – complex natural frequencies, 2 1 4 3 * *, .  
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Fig. 3. Measured data and data sets for identification 
 

For ITD method, four data sets of equal size are obtained from the measured data, as illustrated 
in Fig. 3. The first data set contains N data points, the second data set is obtained by shifting first 
data set to the right by N1, the third and fourth data sets are obtained by shifting the first and second 
data to the right by N2. The shift factors N1 and N2 are determined by following Sarkar [7]: 

 2or  1),4/(1 121 NNftN d , (6) 

where fd is the highest frequency of the system. 
The procedure described previously provides 4 data sets as follow: 
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Following Eq. (5), each data set can be modelled as: 

 11 PX ;   22 PX ;    33 PX ;    44 PX , (8) 
where: 
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By using the relation between the spectral matrices, Eq. (8) can be written as: 
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Data sets X1 and X2 can be combined as a single equation, and also the data sets X3 and X4: 
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By substituting 1 obtained from the first combination into the second one, and after some 
mathematical manipulation, an eigenvalues problem is obtained:  
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where .][ and][ˆ,][,ˆ 4321
1 TTT QPXXZXXZZZA  

Solutions of Eq.(11) are eigenvectors and eigenvalues matrices,  and 2N . The complex mode 
shape matrix P is the upper half of . By assuming that the mth eigenvalue is in the form of mN2 = 
= m + m, the damping factor and the damped natural frequency of Eq. (5) can be calculated as: 

 )2/()ln( 2
22 tNa mmmmm    and   )./()/(tan1 2

12 tNb mmmmm  (12) 

When Z and Ẑ  in Eq.(11) are non-square matrices, the inverse procedure leads to the pseudo-
inverse technique and gives the least squares equivalent in two forms which are known as a positive 
shift ])ˆ)(ˆˆ( 1TT ZZA  and a negative time shift ]))(ˆ( 1TT ZZA . A better estimation of 
the damping factor can be obtained by averaging both equations, i.e. )(2

1 AAA .  
 
MITD Method 

By using the parameters obtained from ITD method, responses of bridge deck T)]()([ tthX  
can be simulated according to Eq.(5). Following the data preparation procedure in ITD method, 4 
data sets can be built from the simulation results, which can be combined into two variables: 
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By combining experimental and simulation data, the A matrix can be built using average scheme: 

 ]))(ˆ()ˆ)(ˆˆ[()( 11
2
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The results of eigenvalue analysis can be used to simulate response of the system. The 
identification procedure by using the combination of the measured and simulated response is 
repeated until the eigenvalues and eigenvectors are convergent.  
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2.3. Reconstruction of Keff and Ceff 
 
The responses simulated from the identification results can be written in state space model: 

 Gyy , (15) 

where TTTT tthtth ])()()()([][ xxy  and effeff CK
I0

G . 

With 0 – 2 2 zero matrix, I – 2 2 identity matrix, Ceff and Keff – the effective damping and 
stiffness matrices described in Eq. (3). Solution of Eq.(15) can be written as: 
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By comparing equation (16) with equation (5), the mth eigenvector is given by: 
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The modal matrix in state-space domain can be expressed as: 
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Therefore, the state matrix can be calculated from the modal matrix in state-space domain: 
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Hence, the effective damping and stiffness of the system are: 

 )1,2(GKeff    and   )2,2(GCeff . (20) 
 
3. Experiment Procedure 
 

The experiment was carried out in the aeroelastic wind tunnel, at the Dept.of Aeronautics and 
Astronautics of ITB, with test section length of 1180 mm and cross section of 400 mm 400 mm. 
The model has a span of 350 mm, chord length of 300 mm, and thickness of 25 mm. The model 
was suspended in the test section with practically 8 identical springs as shown in Fig. 4 [9]. The 
stiffness of each spring was selected by considering the vertical natural frequency. The chord-wise 
distance between springs were adjusted by considering the rotational natural frequency. Frequency 
tuning of the model was also performed by symmetrically adding 4 identical masses inside the 
model, and adjusting their chord-wise distance. The vertical and rotational natural frequency of the 
model are 4.5 Hz and 6.5 Hz, respectively.  

Two B&K 4371 accelerometers were installed inside the model to measure the front and aft 
responses at mid span position. The B&K 2525 conditioning amplifiers integrated the acceleration 
signals twice into the displacement signals. A data acquisition system sampled the data at rate of 
1000 Hz. The two displacement signals were then filtered and manipulated into vertical and rotational 
motion of the bridge at its c.g. Measurement of bridge response due to an initial displacement 
disturbance were carried out at 18 wind speeds from 0 m/s to 10 m/s. At each wind speed, three 
measurements were carried out.  

From the data of vertical and rotational motion of the bridge, the eigenvalues and eigenvectors 
of the model at each wind-speed were identified by using MITD method. The effectiveness of the 
MITD method can be seen in Fig. 5, where simulation of the displacement signal using results of 
this method are very close to the measured data than that of ITD.  
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Fig. 4. Test setup and deck sectional model 

 
(a)                                                                                         (b) 

Fig. 5. Simulations of measured vertical displacement data using (a) ITD method (b) MITD method 
 

After the eigenvalues and eigenvectors of the system at each wind speed were identified, the 
effective stiffness and damping matrix of the model then were calculated using Eq. (17)-(20). 
Finally, the flutter derivatives were determined by using Eq. (4). 
 
4. Results and Analysis 
 

The identification procedure was applied to the displacement signals at each wind speed. The 
real and imaginer part of the eigenvalues, which correspond to the damping and the damped natural 
frequencies are presented in Fig. 6. From three measurements at each wind speed, the identified 
natural frequencies are practically similar, but the dampings are rather scattered especially at higher 
wind speeds. The average of the real and imaginer parts of the eigenvalues are shown in Fig. 6 as 
solid and dashed lines for the rotational and vertical motion. It can be seen that with increasing 
wind speed, the rotational and vertical natural frequency become closer. The vertical motion damping 
increases with increasing wind speed, however, the rotational motion damping increases up to 
about 7.5 m/s and then it decreases. This is the typical characteristic of an aeroelastic system with 
unstable rotational mode. 

From the eigenvalues and eigenvectors of the system, the effective stiffness and damping 
matrices were reconstructed and flutter derivatives were determined. The results are shown in 
Fig. 7, where they are compared to theoretical flutter derivatives of a flat plate of similar planform 
size. It can be seen that at lower wind speeds the measured *

1H , *
2H , and *

3H  are similar to those of 
the thin plate, while at higher speeds their values are different from but their trends are similar to 
those of the thin plate. The measured *

4H  has different values and trend from that of the thin plate 
for all wind speeds. 
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Fig. 6. Imaginer and real eigenvalues (natural frequency and damping) of the model from the three measurements.  

The averaged data is shown in solid line for rotational motion and dashed line for vertical motion 
 

  
 

  
Fig. 7. H* and A* derivatives of the bridge model at several wind speeds 

 
The *

4H  is related to the changes in K11 or to changes in vertical frequency (Eq. 3 and Eq. 4). 
Fig. 6 shows that vertical frequencies change only slightly compared to the torsional frequencies. 
Hence the determination of *

4H  is sensitive to the error in the measurement. Gu [10] also had 
similar results and pointed out that identification of *

4H  is difficult and very sensitive to noise. 
Figure 7 shows that at lower wind speeds the measured A* derivatives are similar to those of 

a thin plate. At higher wind speeds, compared to flutter derivatives of a the thin plate, the values of 
the measured A*  are different but the trends are similar. Except for the *

4A  that has different values 
and trend from that of the thin plate.  

The results are also compared to results of Li [11] who identified the flutter derivatives using 
the Weighting Ensemble Least-Squares method (WELS). The model tested by Liu has a similar 
cross section but different mechanical and geometrical parameters. Therefore the flutter derivatives 
are presented as the function of reduced velocity, U/(f B), as shown in Fig. 8 and Fig. 9. It can be 
seen that current results are in good agreements with those of Li, especially at low reduced 
velocity. At high reduced velocity, the measured *

4H and *
4H  are different from those of Li.  

 
5. Conclusions 
 

Measurement of the flutter derivatives to a bridge section model provides results that are in 
good agreements with theoretical flutter derivatives of thin plate, especially at low wind speeds. At 
higher speeds the agreement is less, however, the trends between the measured data and the theoretical 
values is the same, except for the measured *

4H  and *
4H . 
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Fig. 8. Comparison of measured H* derivatives (upper row) with those measured by Li [11] (lower row) 
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Fig. 9. Comparison of measured A* derivatives (upper row) with those measured by Li [11] (lower row) 

 
The measurement procedure can be used to obtain flutter derivatives of bridge sectional model 

of other geometries, but the test setup should be improved to get better results at high wind speeds. 
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