PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the hydrodynamic properties of the 3-column Spar platform for offshore wind turbines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a design of a floating platform for offshore wind turbines. The concept is a modification of the Spar design and consists of three variable section columns connected to each other by a ballast tank in the lower part of the platform. This solution makes it possible to influence the position of the centre of buoyancy and the centre of mass of the structure. Compared to the classic Spar platform structure, the centre of buoyancy can be higher than mid-draft, which will provide the platform with greater stability. At the same time, this concept is better, in terms of technology, because of its modular structure and smaller bending radii.On the basis of the model testing performed, the hydrodynamic coefficients of the designed platform and its response to a given regular wave were determined (the transfer functions for heave and pitch motion were determined). Then, based on the damping coefficients, the platform was modelled in the ANSYS AQWA program and the results were very similar.
Rocznik
Tom
Strony
35--42
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Gdansk University of Technology, Institute of Ocean Engineering and Ship Technology, Gdansk, Poland
  • Gdansk University of Technology, Institute of Ocean Engineering and Ship Technology, Gdansk, Poland
  • Gdansk University of Technology, Institute of Ocean Engineering and Ship Technology, Gdansk, Poland
Bibliografia
  • 1. P. Dymarski, ‘Design of Jack-up Platform for 6 MW Wind Turbine: Parametric Analysis Based Dimensioning of Platform Legs’. Polish Maritime Research, 26, 183-197, 2019. DOI: 10.2478/pomr-2019-0038
  • 2. J. Żywicki, P. Dymarski, E. Ciba, C. Dymarski, ’Design of Structure of Tension Leg Platform for 6 MW Offshore Wind Turbine Based On Fem Analysis’. Polish Maritime Research, Vol. 24, s1, 230-241, 2017. DOI: 10.1515/pomr-2017-0043
  • 3. P. Dymarski, C. Dymarski, E. Ciba, ‘Stability Analysis of the Floating Offshore Wind Turbine Support Structure of Cell Spar Type During its Installation’. Polish Maritime Research, Vol. 26, 4(104), 109-116, 2019. DOI: 10.2478/ pomr-2019-0072
  • 4. H. Wang, X. Chen, Ch. Zhao, Y. Tang, W. Lin, ‘Conceptual design and hydrodynamic performance of a floating offshore wind turbine cell-spar-buoy support structure, Applied Mechanics and Materials Vol. 472 pp 291-295, 2014. DOI: 10.4028/www.scientific.net/AMM.472.291
  • 5. J. Li., Y. Xie, W. Wu, Ch. Zhang, ‘Analysis Of The Dynamic Response Of Offshore Floating Wind Power Platforms’ In Waves, Polish Maritime Research 4(108) Vol. 27, pp 17-25, 2020. DOI: 10.1007/s11804-010-1002-9
  • 6. F. Zhang, R. Li, J. Yang, G. Chen, ‘Numerical Study On The Hydrodynamic Behaviour Of A New Cell-Truss Spar Platform’, in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2007, vol. 1, DOI: 10.1115/OMAE2007-29086.
  • 7. Ch. Sinsabvarodom, J.H. Widjaja, ‘The innovative hybrid Cell-Truss Spar Buoy Platform for moderate water depth’, Ocean Engineering 113, pp 90-100, 2016. DOI:10.1016/j. oceaneng.2015.12.039.
  • 8. B. Li, J. Ou, ‘Concept Design of a New Deep Draft Platform’, J. Marine Sci. Appl. 9: 241-249, 2010. DOI: 10.1007/ s11804-010-1002-9
  • 9. B. Li, J. Ou, B. Teng, ‘Numerical Investigation of Damping Effects on Coupled Heave and Pitch Motion of an Innovative Deep Draft Multi-Spar’, Journal of Marine Science and Technology, Vol. 19, No. 2, pp. 231-244, 2011. DOI: 10.51400/2709-6998.2158
  • 10. B. Li, J. Ou, Z.Huang,Y.M.Low, ‘Experimental and numerical study of the effects of heave plate on the motion of a new deep draft multi-spar platform’, J Mar Sci Technol 18:229–246, 2013. DOI: 10.1007/s00773-012-0203-0
  • 11. J. M.J. Journee, W.W. Massie, ‘Offshore Hydromechanics.’ Delft University of Technology. 2001.
  • 12. E. Ciba, ‘Heave Motion of a Vertical Cylinder with Heave Plates, Polish Maritime Research, vol. 28, issue 1(109), pp. 42-47, 2021. DOI: 10.2478/pomr-2021-0004
  • 13. E. Ciba, P. Dymarski, M. Grygorowicz, ‘Heave Plates with Holes for Floating Offshore Wind Turbines’, Polish Maritime Research vol 29 pp.26-33, 2022. DOI: 10.2478/ pomr-2022-0003
  • 14. S. Holmes, P. Beynet, A. Sablock, I. Prislin, ‘Heave Plate Design with Computational Fluid Dynamics’, Journal of Offshore Mechanics and Arctic Engineering123(1), 2001. DOI:10.1115/1.1337096
  • 15. L. Sethuraman, V. Venugopal, ‘Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing’, Renewable Energy 52, 160-174, 2013. DOI:10.1016/j.renene.2012.09.063
  • 16. H.B. Liu, F. Duan, F. Yu, B. Yuan, ‘Validation of a FAST spar-type floating wind turbine numerical model with basin test data’, IOP Conference Series: Earth and Enviromental Science, Volume 188, 2018 International Conference on New Energy and Future Energy System, Shanghaj, China.
  • 17. J.R. Browning, J. Jonkman, A. Robertson, A.J. Goupee, ‘Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool’. Journal of Physics: Conference Series, Volume 555, 2014. The Science of Making Torque from Wind 2012 9–11 October 2012, Oldenburg, Germany
  • 18. H. Shin, P.T. Dam, K.J. Jung, J. Song, C. Rim, T. Chung, ‘Model test of new floating offshore wind turbine platforms’, Int. J. Naval Archit. Ocean Eng., 199-209, 2013. DOI:10.2478/IJNAOE-2013-0127.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-752b3cc8-a832-4be0-8ce7-a069487f916b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.