Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we consider compositions of positive integers with 2s and 3s. We see that these compositions lead us to results that involve Padovan numbers, and we give some tiling models of these compositions. Moreover, we examine some tiling models of the compositions related to the Padovan polynomials and prove some identities using the tiling model’s method. Next, we obtain various identities of the compositions of positive integers with 2s and 3s related to the Padovan numbers. The number of palindromic compositions of this type is determined, and some numerical arithmetic functions are defined. Finally, we provide a table that compares all of the results obtained from compositions of positive integers with 2s and 3s.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220227
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Mathematics Department, Mersin University, Mersin, Turkey
autor
- Mathematics Department, Mersin University, Mersin, Turkey
Bibliografia
- [1] P. A. MacMahon, XVII. Memoir on the theory of the compositions of numbers, Philos. Trans. Roy. Soc. London 184 (1893), 835–901, DOI: https://doi.org/10.1098/rsta.1893.0017.
- [2] P. Hitczenko and C. D. Savage, On the multiplicity of parts in a random composition of a large integer, SIAM J. Discrete Math. 18 (2004), no.2, 418–435, DOI: https://doi.org/10.1137/S0895480199363155.
- [3] P. Hitczenko and G. Stengle, Expected number of distinct part sizes in a random integer composition, Comb. Probab. Comput. 9 (2000), no.6, 519–527, DOI: https://doi.org/10.1017/S0963548300004399.
- [4] S. Heubach and T. Mansour, Avoiding patterns of length three in compositions and multiset permutations, Adv. Appl. Math. 36 (2006), no.2, 156–174, DOI: https://doi.org/10.1016/j.aam.2005.06.005.
- [5] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall/CRC, New York, 2009.
- [6] S. Heubach and T. Mansour, Compositions of n with parts in a set, Congr. Numerantium 168 (2004), 127.
- [7] C. D. Savage and H. S. Wilf, Pattern avoidance in compositions and multiset permutations, Adv. Appl. Math. 36 (2006), no. 2, 194–201, DOI: https://doi.org/10.1016/j.aam.2005.06.003.
- [8] K. Alladi and V. E. Hoggatt, Compositions with ones and twos, Fibonacci Q. 13 (1975), 233–239.
- [9] C. Banderier and P. Hitczenko, Enumeration and asymptotics of restricted compositions having the same number of parts, Discrete Appl. Math. 160 (2012), no. 18, 2542–2554, DOI: https://doi.org/10.1016/j.dam.2011.12.011.
- [10] P. Chinn and S. Heubach, Compositions of n with no occurence of k, Congr. Numerantium (2003), 164 33–52.
- [11] S. Eger, Restricted weighted integer compositions and extended binomial coefficient, J. Integer. Seq. 16 (2013), 3.
- [12] V. E. Hoggatt and M. Bicknell, Generalized Fibonacci polynomials, Fibonacci Q. 11 (1973), 457–465.
- [13] V. E. Hoggatt and K. Alladi, Compositions and recurrence relations II, Fibonacci Q. 15 (1977), 239–245.
- [14] A. V. Sills, Compositions, Partitions, and Fibonacci Numbers, 2013, arxiv:1312.0693.
- [15] I. M. Gessel and J. Li, Compositions and Fibonacci Identities, 2013, arxiv:1303.1366.
- [16] C. Kimberling, Enumeration of paths, compositions of integers, and Fibonacci numbers, Fibonacci Q. 39 (2001), no. 5, 430–434.
- [17] A. Knopfmacher and N. Robbins, On binary and Fibonacci compositions, Ann. Univ. Sci. Budapest. Sect. Comput. 22 (2003), 193–206.
- [18] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A000931.
- [19] R. Padovan, Dom Hans van Der Laan and the plastic number, Nexus Netw. J. 4 (2002), no. 3, pp. 181–193.
- [20] I. Stewart, Tales of a neglected number, Sci. Amarican. 274 (1996), no. 6, 102.
- [21] G. Cerda-Morales, New Identities for Padovan Numbers, 2019, arXiv:1904.05492.
- [22] O. Deveci and E. Karaduman, On the Padovan p-numbers, Hacet. J. Math. 46 (2017), no. 4, 579–592.
- [23] Z. İşbilir and G. Gürses, Padovan and Perrin generalized quaternions, Math. Methods Appl. Sci 45 (2022), no. 18, 12060–12076, DOI: https://doi.org/10.1002/mma.7495.
- [24] Y. Soykan, On Generalized Padovan Numbers, 2011, DOI: https://doi.org/10.20944/preprints202110.0101.v1.
- [25] N. Yilmaz and N. Taskara, Matrix sequences in terms of Padovan and Perrin Numbers, J. Appl. Math. 2013 (2013), DOI: https://doi.org/10.1155/2013/941673.
- [26] N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Math. Comput. Simul. 125 (2016), 168–177, DOI: https://doi.org/10.1016/j.matcom.2015.08.008.
- [27] S. J. Tedford, Combinatorial identities for the Padovan numbers, Fibonacci Quart. 57 (2019), 291–298.
- [28] Vieira, R. P. M., Alves, F. R. V., and Catarino, P. M. M. C., Combinatorial interpretation of numbers in the generalized Padovan sequence and some of its extensions. Axioms, 11 (2022), no. 11, 598, DOI: https://doi.org/10.3390/axioms11110598.
- [29] T. Koshy, Fibonacci and Lucas Numbers with Applications 1, John Wiley & Sons, New York, 2018.
- [30] T. Koshy, Fibonacci and Lucas Numbers with Applications 2, John Wiley & Sons, New York, 2019.
- [31] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Aart of Combinatorial Proof, vol. 27, American Mathematical Society, Providence-Rhode Island, 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75298dc5-28e8-4ac1-b39f-56bcf0739762
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.