PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical fracture and microstructural parameters of alkali-activated materials with a ceramic precursor

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pękanie mechaniczne i parametry mikrostrukturalne materiałów aktywowanych alkaliami z ceramicznym prekursorem
Języki publikacji
EN
Abstrakty
EN
Four sets of alkali-activated aluminosilicate composites based on ceramic precursors were studied in terms of their characterization by mechanical fracture and microstructural parameters. Composites made with brick dust as a precursor and with alkaline activator variants of differing silicate modulus (Ms = 0.8, 1.0, 1.2, 1.4 and 1.6) were investigated. The filler used with first two sets of composites was quartz sand, while in the case of the other two sets it was brick rubble; precursor particle size range variants: 0÷1 mm and 0÷0.3 mm. The test specimens had nominal dimensions of 40 × 40 × 160 mm and were provided with notches at midspan after 28 days of hardening. The notches extended up to 1/3 of the height of the specimens, which were subjected to three-point bending tests in which force vs. displacement diagrams were recorded. Values were determined for the static modulus of elasticity, effective fracture toughness, effective toughness and specific fracture energy using the Effective Crack Model and the Work-of-Fracture method. At the same time, values were identified for the static modulus of elasticity, tensile strength and specific fracture energy using the inverse method based on a neural network ensemble. The measured and identi fied parameters are in very good agreement. The silicate modulus, type of filler and refinement of the pre cursor significantly influenced the mechanical fracture parameters of the composites. The microstructure of composites with a coarser precursor was also described.
PL
Przebadano cztery zestawy kompozytów glinokrzemianowych aktywowanych alkaliami na bazie prekursorów ceramicznych pod kątem ich charakterystyki, pękania mechanicznego i parametrów mikrostrukturalnych. Badano kompozyty wykonane z mączką ceglaną jako prekursorem oraz z odmianami aktywatorów alkalicznych o różnym module krzemianowym (Ms = 0,8, 1,0, 1,2, 1,4 i 1,6). Wypełniaczem stosowanym w przypadku dwóch pierwszych zestawów kompozytów był piasek kwarcowy, natomiast w przypadku dwóch pozostałych gruz ceglany. Warianty zakresu wielkości cząstek prekursora wynosiły: 0÷1 mm i 0÷0,3 mm. Próbki do badań miały wymiary nominalne 40 × 40 × 160 mm i po 28 dniach utwardzania były zaopatrzone w nacięcia w połowie rozpiętości. Karby sięgały do 1/3 wysokości próbek, które poddano testom zginania trójpunktowego, w których rejestrowano wykresy siła w funkcji przemieszczenia. Wartości statycznego modułu sprężystości, efektywnej odporności na kruche pękanie, efektywnej wiązkości i właściwej energii pękania wyznaczono za pomocą modelu efektywnego pękania i metody pracy z pękaniem. Jednocześnie określono wartości statycznego modułu sprężystości, wytrzymałości na rozciąganie i właściwej energii pękania metodą odwrotną opartą na zespole sieci neuronowej. Zmierzone i zidentyfikowane parametry są bardzo zgodne. Moduł krzemianowy, rodzaj wypełniacza oraz uszlachetnienie prekursora istotnie wpływały na parametry pękania mechanicznego kompozytów. Opisano również mikrostrukturę kompozytów z grubszym prekursorem.
Rocznik
Strony
118--140
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
autor
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
autor
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
autor
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
  • Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
Bibliografia
  • [1] Pudron A.O., The action of alkalis on blast furnace slag, Journal of the Society of Chemical Industry 1940, 59(9), 191-202.
  • [2] Glukhovsky V.D., Soil silicates. Kiev: Gostroiizdat Publish 1959.
  • [3] Davidovits J., Synthesis of new high-temperature geo-polymer for reinforced plastics/composites, SPE PACTEC 79 Society of Plastic Engineers. Costa Mesa: SPE, 1979, 151-154.
  • [4] Karihaloo Bhushan L., Fracture Mechanics and Structural Concrete. Essex: Longman Scientific & Technical 1995.
  • [5] Veselý V., Keršner Z., Merta I., Quasi-brittle Behaviour of Composites as a Key to Generalized Understanding of Material Structure, Procedia Engineering 2017, 190, 126-133. doi: 10.1016/j.proeng.2017.05.317.
  • [6] Šimonová H. et al., Fracture parameters of alkali-activated aluminosilicate composites with ceramic precur sor, Solid State Phenomena: 26th Concrete Days. Switzerland: Trans Tech Publications, 2020, 73-79.
  • [7] Glukhovsky V., Rostovskaja G., Rumyna G., High strength slag-alkaline cements, Proceedings of the seventh international congress on the chemistry of cement, 1980, 164-168.
  • [8] Davidovits J., Geopolymer chemistry and properties, Proceedings of the conference on Geopolymére 1988, 25-48.
  • [9] Palomo A., Grutzeck M.W., Blanco M.T., Alkali-activated fly ashes, Cement and Concrete Research 1999, 29(8), 1323-1329. doi: 10.1016/s0008-8846(98)00243-9.
  • [10] Yip C.K., Lukey G.C., van Deventer J.S.J., The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research 2005, 35(9), 1688-1697. doi: 10.1016/j.cemconres.2004.10.042.
  • [11] Puertas F., Fernández-Jiménez A., Blanco-Varela M.T., Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement and Concrete Research 2004, 34(1), 139-148. doi: 10.1016/s0008-8846(03)00254-0.
  • [12] Fernández-Jiménez A., Palomo A., Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel 2003, 82(18), 2259-2265. doi: 10.1016/s0016-2361(03)00194-7.
  • [13] Robayo R.A. et al., Alternative cements based on alkali-activated red clay brick waste, Construction and Build ing Materials 2016, 128, 163-169. doi: 10.1016/j.conbuildmat.2016.10.023..
  • [14] Reig L. et al., Properties and microstructure of alkali-activated red clay brick waste, Construction and Building Materials 2013, 43, 98-106. doi: 10.1016/j.conbuildmat.2013.01.031.
  • [15] Reig L. et al., Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware, Construction and Building Materials 2014, 63, 214-222. doi: 10.1016/j.conbuildmat.2014.04.023.
  • [16] Tuyan M., Andiç-Çakir Ö., Ramyar K., Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer, Composites Part B: Engineering 2018, 135, 242-252. doi: 10.1016/j.compositesb.2017.10.013.
  • [17] Sun Z. et al., Synthesis and thermal behavior of geopolymer-type material from waste ceramic, Construction and Building Materials 2013, 49, 281-287. doi: 10.1016/j.conbuildmat.2013.08.063.
  • [18] Komnitsas K. et al., Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers, Advanced Powder Technology 2015, 26(2), 368-376. doi: 10.1016/j.apt.2014.11.012.
  • [19] Komnitsas K., Zaharaki D., Geopolymerisation: A review and prospects for the minerals industry, Minerals Engineering 2007, 20(14), 1261-1277. doi: 10.1016/j.mineng.2007.07.011.
  • [20] Fořt J. et al., Application of waste brick powder in alkali activated aluminosilicates: Functional and environ mental aspects, Journal of Cleaner Production 2018, 194, 714-725. doi: 10.1016/j.jclepro.2018.05.181.
  • [21] Karozou A. et al., Alkali activated clay mortars with different activators, Construction and Building Materials 2019, 212, 85-91. doi: 10.1016/j.conbuildmat.2019.03.244.
  • [22] Mohammadinia A. et al., Impact of potassium cations on the light chemical stabilization of construction and demolition wastes, Construction and Building Materials 2019, 203, 69-74. doi: 10.1016/j.conbuildmat.2019. 01.083.
  • [23] Kaewmee P. et al., Porous and reusable potassium-activated geopolymer adsorbent with high compressive strength fabricated from coal fly ash wastes, Journal of Cleaner Production 2020, 272, p. 122617. doi: 10.1016/j.jclepro.2020.122617.
  • [24] Gavali H.R. et al., Development of sustainable alkali-activated bricks using industrial wastes, Construction and Building Materials 2019, 215, 180-191. doi: 10.1016/j.conbuildmat.2019.04.152.
  • [25] Lee N. et al., Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by products, Construction and Building Materials 2013, 49, 738-746. doi: 10.1016/j.conbuildmat.2013.09.002.
  • [26] Shekhovtsova J. et al., Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization, Journal of Cleaner Production 2018, 178, 22-33. doi: 10.1016/j.jclepro.2017.12.270.
  • [27] De Silva P., Sagoe-Crenstil K., Sirivivatnanon V., Kinetics of geopolymerization: Role of Al2O3 and SiO2, Cement and Concrete Research 2007, 37(4), 512-518. doi: 10.1016/j.cemconres.2007.01.003.
  • [28] Pacheco-Torgal F., Castro-Gomes J., Jalali S., Alkali-activated binders: A review. Part 2. About materials and binders manufacture, Construction and Building Materials 2008, 22(7), 1315-1322. doi: 10.1016/j.conbuildmat.2007.03.019.
  • [29] Fernández-Jiménez A., Palomo A., Composition and microstructure of alkali activated fly ash binder: Effect of the activator, Cement and Concrete Research 2005, 35(10), 1984-1992. doi: 10.1016/j.cemconres.2005.03.003.
  • [30] RILEM TC-50 FMC Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Materials and Structures 1985, 18(106), 285-290.
  • [31] Novák D., Lehký D., ANN inverse analysis based on stochastic small-sample training set simulation, Engineer ing Applications of Artificial Intelligence 2006, 19(7), 731-740. doi: 10.1016/j.engappai.2006.05.003.
  • [32] Lehký D., Keršner Z., Novák D., FraMePID-3PB software for material parameter identification using fracture tests and inverse analysis, Advances in Engineering Software 2014, 72, 147-154. doi: 10.1016/j.advengsoft. 2013.10.001.
  • [33] Červenka V., Jendele L., Červenka J., ATENA program documentation Part 1: theory. Cervenka Consulting Ltd., Prague 2016.
  • [34] Lehký D. et al., A neural network ensemble for the identification of mechanical fracture parameters of fine grained brittle matrix composites, Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Bayonne: 2019, FraMCoS X. doi: 10.21012/fc10.234717.
  • [35] Nergis D.D.B. et al., XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder, Materials 2020, 13(2), 343. doi: 10.3390/ma13020343.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75252fb3-147f-4a8f-88ac-eb9b1b141ea1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.