PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ELRIS2D is an open source code written in MATLAB for the twodimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.
Czasopismo
Rocznik
Strony
443--462
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Ankara University, Faculty of Engineering, Department of Geophysical Engineering, Ankara, Turkey;
Bibliografia
  • Akca, I., and A.T. Başokur (2010), Extraction of structure-based geoelectric models by hybrid genetic algorithms, Geophysics 75, 1, F15-F22, DOI: 10.1190/ 1.3273851.
  • Başokur, A.T., and I. Akca (2011), Object-based model verification by a genetic algorithm approach: Application in archeological targets, J. Appl. Geophys. 74, 4, 167-174, DOI: 10.1016/j.jappgeo.2011.05.004.
  • Bertin, J., and J. Loeb (1976), Experimental and Theoretical Aspects of Induced Polarization, Vols. 1 and 2, Gebrüder Borntraeger, Berlin.
  • Coggon, J.H. (1971), Electromagnetic and electrical modeling by the finite element method, Geophysics 36, 1, 132-155, DOI: 10.1190/1.1440151.
  • DC2DInvRes (2014), DC2DInvRes – Tutorial, http://www. resistivity.net.
  • Dey, A., and H.F. Morrison (1979), Resistivity modelling for arbitrarily shaped twodimensional structures, Geophys. Prospect. 27, 1, 106-136, DOI: 10.1111/ j.1365-2478.1979.tb00961.x.
  • EarthImager (2009) EarthImager 2D. Resistivity and IP inversion software. Instruction manual, Advanced Geosciences, Inc., Austin, USA, 139 pp.
  • Edwards, L.S. (1977), A modified pseudosection for resistivity and IP, Geophysics 42, 5, 1020-1036, DOI: 10.1190/1.1440762.
  • Farquharson, C.G., and D.W. Oldenburg (1998), Non-linear inversion using general measures of data misfit and model structure, Geophys. J. Int. 134, 1, 213- 227, DOI: 10.1046/j.1365-246x.1998.00555.x.
  • Fink, J.B., E.O. McAlister, B.K. Sternberg, W.G. Wieduwilt, and S.H. Ward (eds.) (1990), Induced Polarization: Applications and case histories, Investigations in Geophysics, No. 4, Society of Exploration Geophysicists, Tulsa, DOI: 10.1190/1.9781560802594.
  • Günther, T. (2004), Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements, Ph.D. Thesis, Technische Universitaet Bergakademie, Freiberg, Germany.
  • Günther, T., and C. Rücker (2015), Boundless Electrical Resistivity Tomography BERT 2 – the user tutorial, http://resistivity.net/download/bert-tutorial.pdf.
  • Karaoulis, M., A. Revil, P. Tsourlos, D.D. Werkema, and B.J. Minsley (2013), IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography, Comput. Geosci. 54, 164-170, DOI: 10.1016/j.cageo. 2013.01.008.
  • Loke, M.H. (2014), Tutorial: 2-D and 3-D electrical imaging surveys, http://www. geotomosoft.com/coursenotes.zip.
  • Loke, M.H., and R.D. Barker (1996), Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophys. Prospect. 44, 1, 131-152, DOI: 10.1111/j.1365-2478.1996.tb00142.x.
  • Loke, M.H., J.E. Chambers, D.F. Rucker, O. Kuras, and P.B. Wilkinson (2013), Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys. 95, 135-156, DOI: 10.1016/j.jappgeo.2013.02.017.
  • Marescot, L., S. Rigobert, S.P. Lopes, R. Lagabrielle, and D. Chapellier (2006), A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures, J. Appl. Geophys. 60, 1, 55-67, DOI: 10.1016/ j.jappgeo.2005.12.003.
  • Mufti, I.R. (1976), Finite-difference resistivity modeling for arbitrarily shaped twodimensional structures, Geophysics 41, 1, 62-78, DOI: 10.1190/1.1440608.
  • Oldenburg, D.W., and Y. Li (1994), Inversion of induced polarization data, Geophysics 59, 9, 1327-1341, DOI: 10.1190/1.1443692.
  • Öztürk Akca, C. (2011), Geoarcheological and new archaeogeopyhsical methods applied at ancient settlements: Psidia Antiocheia example, Ph.D. Thesis, Süleyman Demirel University, Isparta, Turkey.
  • Pelton, W.H., L. Rijo, and C.M. Swift (1978), Inversion of two-dimensional resistivity and induced-polarization data, Geophysics 43, 4, 788-803, DOI: 10.1190/1.1440854.
  • Pidlisecky, A., and R. Knight (2008), FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code, Comput. Geosci. 34, 12, 1645-1654, DOI: 10.1016/ j.cageo.2008.04.001.
  • Pidlisecky, A., E. Haber, and R. Knight (2007), RESINVM3D: A 3D resistivity inversion package, Geophysics 72, 2, H1-H10, DOI: 10.1190/1.2402499.
  • Res2DInv (2014), Res2DInv user manual. Version 4.03, Geotomo Software, Penang, Malaysia.
  • Rijo, L. (1977), Modeling of electric and electromagnetic data, Ph.D. Thesis, University of Utah, Salt Lake City, USA.
  • Rücker, C. (2011), Advanced electrical resistivity modelling and inversion using unstructured discretization, Ph.D. Thesis, Leipzig University, Germany.
  • Sasaki, Y. (1994), 3-D resistivity inversion using the finite-element method, Geophysics 59, 12, 1839-1848, DOI: 10.1190/1.1443571.
  • Seigel, H.O. (1959), Mathematical formulation and type curves for induced polarization, Geophysics 24, 3, 547-565, DOI: 10.1190/1.1438625.
  • Shewchuk, R.J. (1997), Delaunay refinement mesh generation, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, USA.
  • Si, H. (2008), Three dimensional boundary conforming Delaunay mesh generation, Ph.D. Thesis, Inst. für Mathematik, Technische Universitat Berlin, Germany.
  • Spitzer, K. (1998), The three-dimensional DC sensitivity for surface and subsurface sources, Geophys. J. Int. 134, 3, 736-746, DOI: 10.1046/j.1365-246x.1998. 00592.x.
  • Sumner, J.S. (1976), Principles of Induced Polarization for Geophysical Exploration, Developments in Economic Geology, Vol. 5, Elsevier Science Publ. Co., Amsterdam.
  • Tripp, A.C., G.W. Hohmann and C.M. Swift (1984), Two-dimensional resistivity inversion, Geophysics 49, 10, 1708-1717, DOI: 10.1190/1.1441578.
  • Tsourlos, P.I., J.E. Szymanski, and G.N. Tsokas (1998), A smoothness constrained algorithm for the fast 2-D inversion of DC resistivity and induced polarization data, J. Balkan Geophys. Soc. 1, 1, 3-13.
  • Ward, S.H. (ed.) (1990), Geotechnical and Environmental Geophysics, Vols. 1-3, Investigations in Geophysics, No. 5, Soc. of Explor. Geophysicists, Tulsa.
  • Wolke, R., and H. Schwetlick (1988), Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons, SIAM J. Sci. Stat. Comput. 9, 5, 907-921, DOI: 10.1137/0909062.
  • Zhou, J., A. Revil, M. Karaoulis, D. Hale, J. Doetsch, and S. Cuttler (2014), Imageguided inversion of electrical resistivity data, Geophys. J. Int. 197, 1, 292- 309, DOI: 10.1093/gji/ggu001.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-751e1075-1499-4bd6-aed4-5e4ff00f9794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.