PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressive optical image encryption using phase-shifting interferometry on a joint transform correlator

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A compressive optical image encryption method, which combines compressive sensing with phase-shifting interferometry on a joint transform correlator, is proposed in the fully optical domain. The object image is first permutated using a binary scrambling method. Next, the permutated object field is encrypted and registered as the holograms by phase-shifting interferometry on the joint transform correlator setup. Then, the encrypted images and the key are compressed to the compressed data using single-pixel compressive imaging. The original image can be reconstructed and decrypted using the specified algorithm. The simulations demonstrate that the method is effective and suitable for image security transmission.
Czasopismo
Rocznik
Strony
245--256
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
autor
  • Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
  • Guangdong Provincial Engineering Research Center for Optoelectronic Instrument, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Bibliografia
  • [1] MATOBA O., NOMURA T., PEREZ-CABRE E., MILLAN M.S., JAVIDI B., Optical techniques for information security, Proceedings of the IEEE 97(6), 2009, pp. 1128–1148.
  • [2] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995, pp. 767–769.
  • [3] COX I.J., KILIAN J., LEIGHTON F.T., SHAMOON T., Secure spread spectrum watermarking for multimedia, IEEE Transactions on Image Processing 6(12), 1997, pp. 1673–1687.
  • [4] WEN CHEN, JAVIDI B., XUDONG CHEN, Advances in optical security systems, Advances in Optics and Photonics 6(2), 2014, pp. 120–155.
  • [5] WEN CHEN, XUDONG CHEN, SHEPPARD C.J.R., Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain, Optics Express 20(4), 2012, pp. 3853–3865.
  • [6] WENQI HE, XIANG PENG, XIANGFENG MENG, XIAOLI LIU, Optical hierarchical authentication based on interference and hash function, Applied Optics 51(32), 2012, pp. 7750–7757.
  • [7] JUN LI, JIAOSHENG LI, YANGYANG PAN, RONG LI, Optical image hiding with a modified Mach–Zehnder interferometer, Optics and Lasers in Engineering 55, 2014, pp. 258–261.
  • [8] WEN CHEN, XUDONG CHEN, Security-enhanced interference-based optical image encryption, Optics Communications 286, 2013, pp. 123–129.
  • [9] RAJPUT S.K., NISHCHAL N.K., Image encryption based on interference that uses fractional Fourier domain asymmetric keys, Applied Optics 51(10), 2012, pp. 1446–1452.
  • [10] JUN LI, JIAOSHENG LI, LINA SHEN, YANGYANG PAN, RONG LI, Optical image encryption and hiding based on a modified Mach–Zehnder interferometer, Optics Express 22(4), 2014, pp. 4849–4860.
  • [11] CHAO LIN, XUEJU SHEN, QINZU XU, Optical image encoding based on digital holographic recording on polarization state of vector wave, Applied Optics 52(28), 2013, pp. 6931–6939.
  • [12] SEOK-HEE JEON, SANG-KEUN GIL, 2-step phase-shifting digital holographic optical encryption and error analysis, Journal of the Optical Society of Korea 15(3), 2011, pp. 244–251.
  • [13] NOMURA T., JAVIDI B., Optical encryption using a joint transform correlator architecture, Optical Engineering 39(8), 2000, pp. 2031–2035.
  • [14] LA MELA C., IEMMI C., Optical encryption using phase-shifting interferometry in a joint transform correlator, Optics Letters 31(17), 2006, pp. 2562–2564.
  • [15] BARRERA J.F., VARGAS C., TEBALDI M., TORROBA R., BOLOGNINI N., Known-plaintext attack on a joint transform correlator encrypting system, Optics Letters 35(21), 2010, pp. 3553–3555.
  • [16] JUN LI, TAO ZHENG, QING-ZHI LIU, RONG LI, Double-image encryption on joint transform correlator using two-step-only quadrature phase-shifting digital holography, Optics Communications 285(7), 2012, pp. 1704–1709.
  • [17] LINA SHEN, JUN LI, HONGSEN CHANG, Double-image encryption based on joint transform correlation and phase-shifting interferometry, Chinese Optics Letters 5(12), 2007, pp. 687–689.
  • [18] RUEDA E., RÍOS C., BARRERA J.F., TORROBA R., Master key generation to avoid the use of an external reference wave in an experimental JTC encrypting architecture, Applied Optics 51(11), 2012, pp. 1822–1827.
  • [19] PATTEN R.F., HENNELLY B.M., KELLY D.P., O’NEILL F.T., YING LIU, SHERIDAN J.T., Speckle photography: mixed domain fractional Fourier motion detection, Optics Letters 31(1), 2006, pp. 32–34.
  • [20] FRAUEL Y., NAUGHTON T.J., MATOBA O., TAJAHUERCE E., JAVIDI B., Three-dimensional imaging and processing using computational holographic imaging, Proceedings of the IEEE 94(3), 2006, pp. 636–653.
  • [21] DONOHO D.L., Compressed sensing, IEEE Transactions on Information Theory 52(4), 2006, pp. 1289–1306.
  • [22] RIVENSON Y., STERN A., JAVIDI B., Overview of compressive sensing techniques applied in holography, Applied Optics 52(1), 2013, pp. A423–A432.
  • [23] CLEMENTE P., DURÁN V., TAJAHUERCE E., ANDRÉS P., CLIMENT V., LANCIS J., Compressive holography with a single-pixel detector, Optics Letters 38(14), 2013, pp. 2524–2527.
  • [24] JUN LI, YAQING LI, YUPING WANG, KE LI, RONG LI, JIAOSHENG LI, YANGYANG PAN, Two-step holographic imaging method based on single-pixel compressive imaging, Journal of the Optical Society of Korea 18(2), 2014, pp. 146–150.
  • [25] JUN LI, JIAO SHENG LI, YANG YANG PAN, RONG LI, Compressive optical image encryption, Scientific Reports 5, 2015, p. 10374.
  • [26] TAKHAR D., LASKA J.N., WAKIN M.B., DUARTE M.E., BARON D., SARVOTHAM S., KELLY K.F., BARANIUK R.G., A new compressive imaging camera architecture using optical-domain compression, Proceedings of SPIE 6065, 2006, article ID 606509.
  • [27] ALFALOU A., BROSSEAU C., Optical image compression and encryption methods, Advances in Optics and Photonics 1(3), 2009, pp. 589–636.
  • [28] DEEPAN B., QUAN C., WANG Y., TAY C.J., Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique, Applied Optics 53(20), 2014, pp. 4539–4547.
  • [29] HUANG R., RHEE K.H., UCHIDA S., A parallel image encryption method based on compressive sensing, Multimedia Tools and Applications 72(1), 2014, pp. 71–93.
  • [30] XINGBIN LIU, WENBO MEI, HUIQIAN DU, Optical image encryption based on compressive sensing and chaos in the fractional Fourier domain, Journal of Modern Optics 61(19), 2014, pp. 1570–1577.
  • [31] XIAOYONG LIU, YIPING CAO, PEI LU, XI LU, YANG LI, Optical image encryption technique based on compressed sensing and Arnold transformation, Optik – International Journal for Light and Electron Optics 124(24), 2013, pp. 6590–6593.
  • [32] JUN LI, HONGBING LI, JIAOSHENG LI, YANGYANG PAN, RONG LI, Compressive optical image encryption with two-step-only quadrature phase-shifting digital holography, Optics Communications 344, 2015, pp. 166–171.
  • [33] ALFALOU A., BROSSEAU C., ABDALLAH N., JRIDI M., Simultaneous fusion, compression, and encryption of multiple images, Optics Express 19(24), 2011, pp. 24023–24029.
  • [34] ALFALOU A., BROSSEAU C., Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction, Optics Communications 307, 2013, pp. 67–72.
  • [35] ALFALOU A., BROSSEAU C., Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption, Optics Letters 35(11), 2010, pp. 1914–1916.
  • [36] ALFALOU A., BROSSEAU C., Dual encryption scheme of images using polarized light, Optics Letters 35(13), 2010, pp. 2185–2187.
  • [37] CANDÈS E. J., The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique 346(9–10), 2008, pp. 589–592.
  • [38] BIOUCAS-DIAS J.M., FIGUEIREDO M.A.T., A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration, IEEE Transactions on Image Processing 16(12), 2007, pp. 2992–3004.
  • [39] JUN LI, TING ZHONG, MEIXIA JIANG, BO DAI, RONG LI, Digital camera with image encryption, Optik – International Journal for Light and Electron Optics 127(3), 2016, pp. 1391–1394.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75140cef-f7f9-47ac-b4ba-022a22a7a316
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.