PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Torsional Strength of Pa2200 Material Shape Additively with the Selective Laser Sintering Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the undertaken research work is to analyze the torsional strength of standard samples with a circular cross-section, produced additively using the SLS (Selective Laser Sintering) technique – sintering PA2200 polyamide powders. The studies conducted so far have not included a static torsion test, the results of which are crucial for parts such as machine shafts, hubs, couplings, etc. Hence the idea of conducting the research in question. The samples were made in different settings relative to the machine's working platform and subjected to post-processing in two variants – by water-soaking and furnace-heating – in order to determine the influence of the orientation of the model in the manufacturing process and the type of post-processing on torsional strength. The produced samples were additionally subjected to a preliminary dimensional and shape verification due to the significant impact of the accuracy of the models in the SLS process on the operation of the above-mentioned machine parts. Based on the analysis of the test results, it was found that the highest torsional strength was determined for the furnace-heated samples. In addition, the highest mapping accuracy was found for models positioned vertically in relation to the machine's working platform.
Twórcy
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering; Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering; Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering; Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Institute of Mechanics and Printing, Department of Machine Design and Biomedical Engineering, Warsaw University of Technology, plac Politechniki 1, 00-661 Warszawa, Poland
  • Faculty of Mechanical Engineering, Department of Production Engineering, Lublin University of Technology, ul. Nadbystrzycka 38 D 20 – 618 Lublin, Poland
autor
  • he Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering; Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • IBUS MENOS Sp. z o.o.; ul. Spadochroniarzy 18, 80-298 Gdańsk, Poland
Bibliografia
  • 1. Wohlers Report, 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, 2018.
  • 2. Orth A., Sampson K.L., Zhang Y., Ting K., Aranguren van Egmond D., Laqua K., Lacelle T., Webber D., Fatehi D., Boisvert J., Paquet C. On-the-fly 3D metrology of volumetric additive manufacturing. Additive Manufacturing 2022; 56: 2022.
  • 3. Górski F., Wichniarek R., Kuczko W., Żukowska M., Szuszek E., Rapid Manufacturing of Individualized Prosthetic Sockets. Advances in Science and Technology Research Journal 2020; 14(1): 42–49.
  • 4. Manjaiah M., Raghavendra K., Balashanmugam N., Paulo Davim J. Additive Manufacturing: A Tool for Industrial Revolution 4.0, Elsevier Science 2021.
  • 5. Wi K., Suresh V., Wang K., Li B., Qin H. Quantifying quality of 3D printed clay objects using a 3D structured light scanning system. Additive Manufacturing 2020; 32.
  • 6. Dziubek T., Budzik G., Kawalec A., Dębski M., Turek P., Oleksy M., Paszkiewicz A., Poliński P., Kochmański Ł., Kiełbicki M., Józwik J., Kuric I., Cebulski J. Strength of threaded connections additively produced from polymeric materials. POLIMERY 2022; 67(6): 261–270.
  • 7. Guerra M.G., Volpone C., Galantucci L.M., Percoco G., Photogrammetric measurements of 3D printed microfluidic devices. Additive Manufacturing 2018; 21: 53–62.
  • 8. Vora H.D., Sanyal S. A comprehensive review: metrology in additive manufacturing and 3D printing technology. Progress in Additive Manufacturing 2020; 5: 319–353.
  • 9. Gao X., Kuang X., Li J., Qi S., Su Y., Wang D., Fused filament fabrication of polymer materials: A review of interlayer Bond. Additive Manufacturing 2021; 37.
  • 10. Badiru A.B., Valencia V.V., Liu D. Additive Manufacturing Handbook. Product Development for the Defense Industry, CRC Press, 2020.
  • 11. Bell D., Siegmund T. 3D-printed polymers exhibit a strength size effect. Additive Manufacturing 2018; 21: 658–665.
  • 12. Królczyk G., Kacalak W., Wieczorowski M. 3D Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes. Materials 2021; 14(8).
  • 13. Birosz, M.T., Ledenyák, D., Andó, M. Effect of FDM infill patterns on mechanical properties. Polymer Testing 2022; 113.
  • 14. Koteras R., Wieczorowski M., Znaniecki P., Swojak N. Measurement strategy as a determinant of the measurement uncertainty of an optical scanner. Archives of Mechanical Technology and Materials 2019; 39(1): 26–31.
  • 15. Wieczorowski M., Yago I.P., Pereira D.A., Gapiński B., Budzik G., Diering M. Comparison of Measurements Realized on Computed Tomograph and Optical Scanners for Elements Manufactured by Wire Arc Additive Manufacturing, Advances in Manufacturing III, Volume 4 – Measurement and Control Systems: Research and Technology Innovations, Industry 4.0, Switzerland, Springer 2022; 127–141.
  • 16. Bernaczek J., Dębski M., Gontarz M., Kiełbicki M., Magniszewski M., Przeszłowski Ł. Influence of torsion on the structure of machine elements made of polymeric materials by 3D printing. POLIMERY 2021; 66(5): 298–304.
  • 17. Budzik G., Magniszewski M., Oleksy M., Oliwa R., Bernaczek J., Torsional strengh testing of machine elements manufacture by incremental technology from polymeric materials. POLIMERY 2018; 63(11–12): 830–832.
  • 18. Fontana L., Minetola P., Iuliano L., Rifuggiato S., Khandpur M.S., Stiuso V. An investigation of the influence of 3D printing parameters on the tensile strength of PLA material. Materials Today, Proceeding 2022; 57(2): 657–663.
  • 19. Oleksy M., Oliwa R., Bulanda K., Budzik G., Przeszłowski Ł., Magniszewski M., Paszkiewicz A., Torsional strength test of spline connections made of polimer materials. POLIMERY 2021; 66(1): 52–55.
  • 20. Cobian L., Rueda-Ruiz M., Fernandez-Blazquez
  • J.P., Martinez V., Galvez F., Karayagiz F., Lück T., Segurado J., Monclus M.A. Micromechanical characterization of the material response In a PA12-SLS fabricated lattice structure and its correlation with bulk behaviour. PolymerTesting 2022; 110.
  • 21. Zubrzycki J., Estrada Q., Staniszewski M., Marchewka M. Influence of 3D Printing Parameters by FDM Method on the Mechanical Properties of Manufactred Parts. Advances in Science and Technology Research Journal 2022; 16(5): 52–63.
  • 22. EOS GmbH – Electro Optical Systems, Product Information datasheet – Finepolyamide PA 2200 for EOSINT P (https://3dformtech.fi/wp-content/uploads/2019/11/Material-Data-PA2200.pdf).
  • 23. Bourell D.L., Sintering in Laser Sintering, JOM 2016; 68: 885–889.
  • 24. Stoia D.I., Linul E., Marsavina L. Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering, Materials (Basel) 2019; 12(6).
  • 25. Thiede S., Wiese M., Herrmann Ch. Upscaling strategies for polymer additive manufacturing: anassessment from economic and environmental perspective for SLS, MJF and DLP. Procedia CIRP 2021; 104: 653–658.
  • 26. Schmid M., Amado A., Wegener K. Materials perspective of polymers for additive manufacturing with selective laser sintering. Journal of Materials Research 2014; 29(17): 1824–1832.
  • 27. Barchiesi E., Ganzosch G., Liebold C., Placidi L., Grygoruk R., Müller W.H. Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Continuum Mechanics and Thermodynamics 2019; 31: 33–45.
  • 28. Turco E., Dell’Isola F., Luigi Rizzi N., Grygoruk R., Müller W.H., Liebold C. Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence. Mechanics Research Communications 2016; 76: 86–90.
  • 29. Razaviye M.K., Tafti R.A., Khajehmohammadi M. Aninvestigation on mechanical properties of PA12 parts produced by a SLS 3D printer: An experimental spproach. CIRP Journal of Manufacturing Science and Technology 2022; 38: 760–768.
  • 30. Golaszewski M., Grygoruk R., Giorgio I., Laudato M., Di Cosma F. Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions. Continuum Mechanicsand Thermodynamics 2019; 31: 1015–1034.
  • 31. Rajesh J.J., Bijwe J., Venkataraman B. Effect of water absorption on erosive wear behaviour of polyamides. Journal of Materials Science 2002; 37: 5107–5113.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7513473c-304f-4201-b1b5-bb85c0400226
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.