PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical study of dissipative chemically reactive radiative MHD flow past a vertical cone with nonuniform mass flux

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A computational model is presented to explore the properties of heat source, chemically reacting radiative, viscous dissipative MHD flow of an incompressible viscous fluid past an upright cone under inhomogeneous mass flux. A numerical study has been carried out to explore the mass flux features with the help of Crank-Nicolson finite difference scheme. This investigation reveals the influence of distinct significant parameters and the obtained outputs for the transient momentum, temperature and concentration distribution near the boundary layer is discussed and portrayed graphically for the active parameters such as the Schmidt number Sc, thermal radiation Rd, viscous dissipation parameter […], chemical reaction parameter […], MHD parameter M and heat generation parameter ]…]. The significant effect of parameters on shear stress, heat and mass transfer rates are also illustrated.
Rocznik
Strony
159--176
Opis fizyczny
Bibliogr. 40 poz., wykr.
Twórcy
autor
  • Department of Mathematics, S R M Institute of Science and Technology Kattankulathur, Tamil Nadu-603203 INDIA
autor
  • School of Applied Sciences and Mathematics Universiti Teknologi Brunei, JalanTungku Link Gadong BE1410, Brunei Darussalam
  • Department of Basic Sciences and Mathematics Kuwait College of Science and Technology Doha District, Block 4, P.O. Box No. 27235, Safat 13133, KUWAIT
Bibliografia
  • [1] Rao J.A. and Shivaiah S. (2011): Chemical reaction effects on unsteady MHD flow past semi-infinite vertical porous plate with viscous dissipation. Meccanica, vol.32, No.8, pp.1065-1078.
  • [2] Siddiqa S., Asghar S. and Hossain Md. A. (2010): Radiation effects in mixed convection flow of a viscous fluid having temperature-dependent density along a permeable vertical plate. Applied Mathematics and Mechanics, vol.31, No.10, pp.1217-1230.
  • [3] Srinivasa A.H. and Eswara A.T. (2010): Unsteady mixed convection flow from a moving vertical plate in a parallel free stream: Influence of heat generation or absorption. International Journal of Heat and Mass Transfer, vol.53, No.21-22, pp.4749-4756.
  • [4] Ramli N., Ahmad S. and Pop I (2018): MHD forced convection flow and heat transfer of ferro fluids over a moving at plate with uniform heat flux and second-order slip effects. Scientia Iranica,vol.25, No.4, pp.2186-2197.
  • [5] Lakshmi Narayana P.A. and Sibanda P. (2010):Soret and Dufour effects on free convection along a vertical wavy surface in a fluid saturated Darcy porous medium. International Journal of Heat and Mass Transfer, vol.53, No.15-16, pp.3030-3034.
  • [6] Kumari M. and Nath G. (2012): Natural convection on a horizontal cone in a porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection. European Journal of Physics, vol.10, No.5, pp.1150-1167.
  • [7] Dulal Pal and Talukdar B. (2013): Perturbation technique for unsteady MHD mixed convection periodic flow, heat and mass transfer in micropolar fluid with chemical reaction in the presence of thermal radiation. Heat Mass Transfer,vol.49, No.2, pp.207-217.
  • [8] Ullaha H., Islam S., Khan I., Sharidan S. and Fiza M. (2017): MHD boundary layer flow of an incompressible upper-convected Maxwell fluid by optimal homotopy asymptotic method. Scientia Iranica, vol.24, No.1, pp.202-210.
  • [9] Pullepu B. and Sambath P. (2014): Free convection flow of dissipative fluid past from non-isothermal vertical cone. Journal of Engineering Physics Thermo Physics, vol.87, No.4, pp.962-972.
  • [10] Pullepu B., Sambath P. and Viswanathan K.K. (2014): Effects of chemical reactions on unsteady free convective and mass transfer flow from a vertical cone with heat generation/absorption in the presence of VWT/VWC. Mathematical Problems in Engineering (Springer), vol.2014, pp.1-20.
  • [11] Pullepu B., Sambath P., Selva Rani M., Chamkha A.J. and Viswanathan K.K. (2016): Numerical solutions of free convective flow from a vertical cone with mass transfer under the influence of chemical reaction and heat generation/absorption in the presence of UWT/UWC. Journal of Applied Fluid Mechanics, vol.9, No.1, pp.343-357.
  • [12] Sambath P., Pullepu B., Hussain T. and Sabir Ali Shehzad (2018): Radiated chemical reaction impacts on natura convective MHD mass transfer flow induced by a vertical cone. Results in Physics(Elsevier),vol.8, pp.304–315.
  • [13] Muhaimin I., Kandasamy R. and Khamis Azme B. (2012): Numerical investigation of variable viscosities and thermal stratification effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of a chemical reaction. Meccanica, vol.47, No.4, pp.863-876.
  • [14] Zueco J. and Ahmed S. (2013): Combined heat and mass transfer by mixed convection MHD flow along a porous plate with chemical reaction in presence of heat source. Meccanica,vol.48, No.4, pp.931-942.
  • [15] Anjali Devi S.P. and Vasantha Kumari D. (2014): Numerical investigation of slip flow effects on unsteady hydromagnetic flow over a stretching surface with thermal radiation. International Journal of Advanced and Applied Mathematics and Mechanics, vol.1, No.4, pp.20-32.
  • [16] Alam M.S., Haque M.M. and Uddin M.J. (2014): Unsteady MHD free convective heat transfer flow along a vertical porous flat plate with internal heat generation. International Journal of Advanced and Applied Mathematics and Mechanics, vol.2, No.2, pp.52-61.
  • [17] Awad F.G., Sibanda P., Motsa S.S. and Makinde O.D. (2010): Double diffusion from a vertical truncated cone in a non-Newtonian fluid saturated porous medium with variable heat and mass fluxes. International Communications of Heat Mass Transfer, vol.37, No.3, pp.261-265.
  • [18] Ching-Yang Cheng (2012): Radiation effects on transient magneto hydrodynamic natural convection flow with heat generation. International Journal of Thermal Sciences, vol.58, pp.79-91.
  • [19] Khan W.A., Khan Z.H. and Haq R.U. (2015): Flow and heat transfer of ferrofluids over a at plate with uniform heat flux. European Physics Journal Plus, vol.130, No.86, 10 pages.
  • [20] Das S., Jana R.N. and Makinde O.D. (2016): Magneto hydrodynamic free convective flow of nanofluids past an oscillating porous at plate in a rotating system with thermal radiation and hall effects. Journal of Mechanics, vol.32, No.02, pp.197-210.
  • [21] Kasmani R.M., Sivasankaran S., Bhuvaneswari M. and Siri Z. (2016): Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction. Journal of Applied Fluid Mechanics, vol.9, No.1, pp.379-388.
  • [22] Niranjan H., Sivasankaran S. and Bhuvaneswari M.(2017): Chemical reaction Soret and Dufour effects on MHD mixed convection stagnation- point flow in a porous medium with convective boundary condition. Int. J. Numerical Methods Heat and Fluid Flow, vol.27, No.2, pp.454-470.
  • [23] Niranjan H., Sivasankaran S. and Bhuvaneswari M. (2016): Analytical and numerical study on magneto convection stagnation point flow in a porous medium with chemical reaction, radiation and slip effects. Mathematical Problems in Engineering, 2016 Article Id 4017076, pp.1-12.
  • [24] Chamkha A.J., Abbasbandy S. and Rashad A.M. (2015): Non-Darcy natural convection flow of non-Newtonian nanofluid over a cone saturated in a porous medium with uniform heat and volume fraction fluxes. International Journal of Numerical Methods and Heat Fluid Flow, vol.25 pp.422-437.
  • [25] AnuarIshak, Yacob N.A., Nazar R. and Pop I. (2012): Similarity solutions for the mixed convection flow over a vertical plate with thermal radiation. Journal of Engineering Physics Thermophysics, vol.85, No.2, pp.339-348.
  • [26] Crank J. and Nicolson P. (1947): A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proceedings of Cambridge. Philosophical Society, vol.43, pp.50-67.
  • [27] Carnahan B., Luther H.A. and Wilkes J.O. (1969): Applied Numerical Methods. New York: John Wiley and Sons.
  • [28] Ruhaila, Kasmani Md., Sivasankaran S., Bhuvaneswari M. and Ahmed Kadhim Hussein (2017): Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects. Int. J. Numerical Methods Heat and Fluid Flow, vol.27, No.10, pp.2333-2354.
  • [29] Ramly N.A., Sivasankaran S. and Noor N.F.M. (2017): Zero and non zero normal fluxes of thermal radiative boundary layer flow of nanofluidover a radially stretched surface. Scientia Iranica, Trans. B. Mech. Engg, vol.24, No.6, pp.2895-2903.
  • [30] Hsiao K. (2017): Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Applied Thermal Engineering, vol.112, pp.1281-1288.
  • [31] Pal D. and Mandal G. (2017): Thermal radiation and MHD effects on boundary layer flow of micro polar nanofluid past a stretching sheet with non-uniform heat source/sink. International Journal of Mechanical Sciences, vol.126, pp.308-318.
  • [32] Hayat T., Qayyum S., Shehzad S.A. and Alsaedi A. (2017):Simultaneous effects of heat generation/absorption and thermal radiation in magneto hydrodynamics flow of Maxwell nanofluid towards a stretched surface. Results in Physics, vol.7, pp.562-573.
  • [33] Hayat T., Ijaz Khan M., Farooq M., Alsaedi A. and Imran Khan M. (2017): Thermally stratified stretching flow with Cattaneo-Christov heat flux. International Journal of Heat and Mass Transfer, vol.106, pp.289-294.
  • [34] Gebhart B. (1962): Effects of viscous dissipation in natural convection. Journal of FluidMechanics, vol.14, pp.225-232.
  • [35] Zueco Jordan J. (2006): Numerical study of an unsteady free convective magneto hydrodynamic flow of a dissipative fluid along a vertical plate subject to a constant heat flux. International Journal of Engineering Science, vol.44, pp.1380-1393.
  • [36] Sravanthi C.S. (2018): Slip flow of nanouid over a stretching vertical cylinder in the presence of non-linear thermal radiation and non-uniform heat source/sink. Scientia Iranica, vol.25, No.4, pp.2098-2110.
  • [37] Ghaffar Pasand O. (2018): Unsteady double-diffusive natural convection with Soret and Dufour effects inside a two-sided lid-driven skewed enclosure in the presence of applied magnetic field. Scientia Iranica, vol.25, No.3, pp.1215- 1235.
  • [38] Niranjan H., Sivasankaran S. and Bhuvaneswari M. (2017): Chemical reaction radiation and slip effects on MHD mixed convection stagnation- point flow in a porous medium with radiation and slip condition. Int. J. Numerical Methods Heat and Fluid Flow, vol.24, No.1, pp.698-706.
  • [39] Loganathan K., Sivasankaran S., Bhuvaneswari M. and Rajan S. (2019): Second-order slip, cross-diffusion and chemical reaction effects on magneto-convection of Oldroyd-B liquid using Cattaneo–Christov heat flux with convective heating. Journal of Thermal Analysis and Calorimetry, vol.136, No.1, pp.401-409.
  • [40] Brewster M.Q. (1992): Thermal Radiative Transfer and Properties. New York: John Wiley and Sons.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75126a9a-f84f-4a00-b0ef-42d59378274f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.