PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the exchanged metal ions (Cu, Co, Ni and Mn) on the selective catalytic reduction of NO with hydrocarbons over modified ferrierite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the research results concerning the possibilities of natural zeolite-ferrierite application for the reduction of nitrogen oxide. H-FER forms were modified by Cu+2, Co+2, Mn+2, Ni+2 using an ion exchange procedure. The effect of metal contents was shown for the ferrierite matrices and related to their catalytic properties. The catalytic properties of Cu-, Co-Ni-, and Mn- were compared for NO reduction with methane. High NO conversion was observed for copper and cobalt-ferrierite catalysts, especially in the temperature range 400 and 500oC. It was found that copper- and cobalt-ferrierite catalysts have higher activity and N2 selectivity than the catalysts composed of nickel and manganese doped on ferrierite. Moreover, the nickel and manganese containing catalysts produced more nitrous oxide than nitrogen. The presence of both copper and cobalt species seems to be an indispensable condition for a large activity and selectivity in the NO reduction.
Rocznik
Strony
10--15
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
  • Department of Environmental Chemistry, Marie Curie-Sklodowska University in Lublin, 3 Marie Curie-Skłodowska Sq., 20-031 Lublin, Poland
Bibliografia
  • 1. Traa, Y., Burger, B. & Weitkamp, J. (1999). Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons. Microporous and Mesoporous Mater. 30 (1), 3-41. DOI: 10.1016/S1387-1811(99)00030-X.
  • 2. Thirupathi, B. & Smirniotis, P.G. (2012). Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: catalytic evaluation and characterizations. J. Catal. 288, 74-83. DOI: 10.1016/j.jcat.2012.01003.
  • 3. Ettireddy, R.D., Ettireddy, N., Boningari, T., Pardemann, R. & Smirniotis, G.P. (2012). Investigation of the selective catalytic reduction of nitric oxide withn ammonia over Mn/TiO2 catalysts throught transient isotopic labeling and in situ FT-IR study. J. Catal. 292, 53-63. DOI: 10.1016/j.jcat.2012.04.019.
  • 4. Smirniotis, P.G., Peña, D.A. & Uphade, B.S. (2001). Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2. Angew. Chem. Int. Ed. 40 (13), 2479-2482. DOI: 10.1002/1521-3773(20010702)40.
  • 5. Lukanov, D.B., Lombardo, E.A., Sill, G.A., d’ltri, J.L. & Hall, W.K. (1996). Selective catalytic reduction (SCR) of NO with methane over CoZSM-5 and HZSM-5 zeolites: On the role of free radicals and competitive oxidation reactions. J. Catal. 163, 447-456. DOI: 10.1016/jcat.1006.0346.
  • 6. Lee, T.J., Nam, I.S., Ham, S.W., Baek, S.Y., Shi, K.H. (2003). Effect on Pd of the wather tolerance of Co-ferrierite catalysts for NO reduction by CH4. Appl. Catal. B 41, 115-127. DOI: 10.1016/S0926-3373(02)00197-2.
  • 7. Okumura, K., Kusakabe, T. & Niwa, M. (2003). Durable and selective activity of Pd loaded on WO3/ZrO2 for NO by CH4 in the presence on water wapor. Appl. Catal. B 41, 137-142. DOI: 10.1016/S0926-3373(02)00206-0.
  • 8. Armor, J.N. (1995). Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen: a review. Catal. Today 26, 147-158. DOI: 10.1016/0920-5861(95)00134-2.
  • 9. Resini, C., Montanari, T., Nappi, L., Bagnasco, G., Turco, M., Busca, G., Bregani, F., Notario, M. & Rocchini, G. (2003). Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterization and catalytic activity. J. Catal. 214, 179-190. DOI: 10.1016/ S0021-9517(02)00153-7.
  • 10. Wang, X., Zhang, T., Sun, X., Guan, W., Liang, D. & Lin, L. (2000). Enhanced activity of an In-Fe2O3/HZSM-5 catalyst for NO reduction with methane. Appl. Catal. B 24, 169-173. DOI: 10.1016/S0926-3373(99)00101-0.
  • 11. Ren, L., Zhang, T., Tang, J., Zhao, J., Li, N. & Lin, L. (2003). Promotional effect of coloidal alumina on the activity on the In/HZSM-5 catalyst for the selective reduction of NO with methane. Appl. Catal. B 41, 129-136. DOI: 10.1016/ S0926-3373(02)00205-9.
  • 12. Otsuka, H. (2001). The selective catalytic reduction of nitrogen oxides by methane on noble metal-loaded sulfated zirconia. Appl. Catal. B 33, 325-333. DOI: 10.1016/S0926-3373(01)00190-4.
  • 13. Makoto, M., Yoshifumi, H. & Chikafumi, Y. (1997). Reduction of nitrogen oxides with hydrocarbons catalyzed by bifunctional catalysts. Catal. Today 38, 157-162. DOI: 10.1016/ S0920-5861(97)00060-6.
  • 14. Ohtsuka, H. & Tabata, T. (2001). Roles palladium and platinum in the selective catalytic reduction of nirogen oxide by methane on palladium-platinum loaded sulfated zirconia. Appl. Catal. B 29, 177-183. DOI: 10.1016/S0926-3373(00)00201-0.
  • 15. Cordoba, L.F., Sachtler, W.M. & de Correa, C.M. (2005). NO reduction by CH4 over of Pd/Co-sulfated zirconia catalysts. Appl. Catal. B 56, 269-277. DOI: 10.1016/j.apcatb.2004.09.012.
  • 16. Chen, H., Sun, Q., Wen, B., Yeom, Y., Weitz, E. & Sachtler, W. (2004). Reduction over zeolite-based catalysts of nitrogen oxides in emissions containing excess oxygen: Unraveling the reaction mechanism. Catal. Today 96, 1-10. DOI: 10.1016/j. cattod.2004.05.002.
  • 17. Mokhnachuk, O.V., Sloviev, S.O., Kapran, A.M. (2007). Effect of rare-earth element oxides on the structural and phisico- chemical characteristics of Pd/Al2O3 monolithic catalysts of nitrogen oxide reduction by methane. Catal. Taday 119, 145-151. DOI: 10.1016/j. cattod.2006.08.061.
  • 18. Labhsetwar, N., Minamino, H., Mukherjee, M., Mitsuhaski, T., Rayalu, S., Dhakad, M., Haneda, H., Subert, J. & Devotta, S. (2007). Catalytic propertis of Ru-mordenite for NO reduction. J. Molecular Catal. A 261, 213-217. DOI: 10.1016/j. molcata.2006.08.013.
  • 19. Torre-Abreu, C., Henriques, C., Riberio, R.F., Delahay, G., Riberio, F. (1999). Selective catalytic reduction of NO on copper-exchanged zeolites: the role of the structure of the zeolite on the nature of copper-active sites. Catal. Today 54, 407-419. DOI: 10.1016/S0920-5861(99)00204-7.
  • 20. Kubacka, A., Janas, J., Wołoch, E. & Sulikowski, B. (2005). Selective catalytic reduction of nitric oxide over zeolite catalysts in the presence of hydrocarbons and the excess of oxygen. Catal. Today 101, 139-145. DOI: 10.1016/j.cattod.2005.01.11.
  • 21. Chen, H.Y., Wang, X. & Sachtler, W. M. (2000). Reduction of NOx over various Fe/zeolite catalysts. Appl. Catal. A 194, 159-168. DOI: 10.1016/S0926-860X(99)00364-6.
  • 22. Guterrez, L., Boix, A. & Petunchi, J. (1999). Effect on Pt on the water resistance of Co-zeolites upon the SCR of NOx with CH4. Catal. Today 54, 451-464. DOI: 10.1016/ S0920-5861(99)00208-4.
  • 23. Ramallo-López, J.M., Requejo, F.G., Gutierrez, L.B. & Miro, E.E. (2001). EXAFS, TDPAC and TPR characterization of PtIn Ferierite: the role of surface species in the SCR of NOx with CH4. Appl. Catal. B 29, 35-46. DOI: 10.1016/ S0926-3373(00)00185-5.
  • 24. Kubacka, A., Janas, J. & Sulikowski, B. (2006). In/ Co-ferrierite: A highly active catalyst for the CH4 SCR NO process under presence of steam. Appl. Catal B 69, 43-48. DOI: 10.1016/j.apcatb.2006.05.014.
  • 25. De Lucas, A., Valverde, J.L., Dorado, F., Romero, A. & Asencio, I. (2005). Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOx over mordenite and ZSM-5. J. Molecular Catal. A 225, 47-58. DOI: 10.1016/j.molcata.2004.08.036.
  • 26. Godowski, P.J., Onsgard, J.J., Gagor, A., Kondys, M. & Li, Z.S. (2005). Investigation of the CO + NO reaction over the Cu(001) surface. Chem. Phys. Lett. 406, 441-452. DOI: 10.1016/j.cplet.2005.03.020.
  • 27. Pieterse, J.A., Van den Brink, R.W., Booneveld, S., De Bruijin, F.A. (2003). Influence of zeolite structure on the activity and durability of Pd-Co zeolite catalysts in the reduction of NO with methane. Appl. Catal. B 46, 239-250. DOI: 10.1016/ S0926-3373(03)00213-3.
  • 28. Li, N., Wang, A., Tang, J., Wang, X., Liang, D. & Zhang, T. (2003). NO reduction by CH4 over of Pd/Co-sulfated zirconia catalysts. Appl. Catal. B 43, 195-201. DOI: 10.1016/ S0926-3373(02)00301-6.
  • 29. Valverde, J.L., Lucas, A.D., Dorado, F., Sun-Kou, R., Sanchez, P., Asencio, I. & Romero, A. (2003). Synthesis and characterization of Cu-TiPILCs for selective catalytic reduction of NO by propylene in the presence of oxygen and H2O: influence of the calcination temperature, the copper content and the cation promoter (Ce/Ag). Ind. Eng. Chem. Res. 42, 2783-2793. DOI: 10.1021/ie0209069.
  • 30. Valverde, L., Dorado, F., Sanchez, P., Asencio, I. & Romero, A. (2003). Characterization and catalytic properties of Ti-pilared clays prepared at laboratory and pilot scales: a comparative study. Ind. Eng. Chem. Res. 43, 3871-3883. DOI: 10.1021/ie0208772.
  • 31. Ferriera, A.P., Henriques, C., Ribeiro, M.F. (2005). SCR of NO with methane over Co-HBEA and PdCo-HBEA catalysts: the promoting effect of steaming over bimetallic catalysts. Catal. Today 108, 181-191. DOI: 10.1016/j.cattod.2005.07.089.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-750892a4-5be2-4146-b2f5-bffe83edd838
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.