PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Petrographic composition of coal from the Janina mine and char obtained as a result of gasification in the CFB gasifier

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Skład petrograficzny węgla z kopalni Janina i karbonizatu uzyskanego w wyniku jego zgazowania z cyrkulacyjnym złożem fluidalnym
Języki publikacji
EN
Abstrakty
EN
The research was aimed at examining the impact of the petrographic composition of coal from the Janina mine on the gasification process and petrographic composition of the resulting char. The coal was subjected to fluidized bed gasification at a temperature below 1000°C in oxygen and CO2 atmosphere. The rank of coal is borderline subbituminous to bituminous coal. The petrographic composition is as follows: macerals from the vitrinite (61.0% vol.); liptinite (4.8% vol.) and inertinite groups (29.0% vol.). The petrofactor in coal from the Janina deposit is 6.9. The high content of macerals of the inertinite group, which can be considered inert during the gasification, naturally affects the process. The content of non-reactive macerals is around 27% vol. The petrographic analysis of char was carried out based on the classification of International Committee for Coal and Organic Petrology. Both inertoid (34.7% vol.) and crassinetwork (25.1% vol.) have a dominant share in chars resulting from the above-mentioned process. In addition, the examined char contained 3.1% vol. of mineroids and 4.3% vol. of fusinoids and solids. The calculated aromaticity factor increases from 0.75 in coal to 0.98 in char. The carbon conversion is 30.3%. Approximately 40% vol. of the low porosity components in the residues after the gasification process indicate a low degree of carbon conversion. The ash content in coal amounted to 13.8% and increased to 24.10% in char. Based on the petrographic composition of the starting coal and the degree of conversion of macerals in the char, it can be stated that the coal from the Janina deposit is moderately suitable for the gasification process.
Celem badań była analiza wpływu składu petrograficznego węgla z kopalni Janina na proces zgazowania i skład petrograficzny powstałego karbonizatu. Węgiel poddano zgazowaniu w reaktorze fluidalnym w temperaturze poniżej 1000°C oraz w atmosferze tlenu i CO2. Stopień uwęglenia wyjściowego węgla to granica między węglem brunatnym twardym błyszczącym a węglem kamiennym. Skład petrograficzny przedstawia się następująco: dominują macerały z grupy witrynitu (61,0% obj.); a z grupy liptynitu i inertynitu stanowią odpowiednio o 4,8% obj. i 29,0% obj. Petrofactor w węglu ze złoża Janina wynosi 6,9. Wysoka zawartość macerałów z grupy inertynitu, którą można uznać za obojętną podczas zgazowania, ma naturalny wpływ na proces. Zawartość niereaktywnych macerałów wynosi około 27% obj. Analiza petrograficzna karbonizatu została przeprowadzona w oparciu o klasyfikację International Committee for Coal and Organic Petrology. Składniki inertoid (34,7% obj.) i crassinetwork (25,1% obj.) mają dominujący udział w karbonizacie powstałym w procesie zgazowania. Ponadto badany węgiel zawierał 3,1% obj. mineroidów i 4,3% obj. fusinoidów i solid. Obliczony współczynnik aromatyczności wzrasta z 0,75 w węglu do 0,98 na karbonizacie. Konwersja węgla wynosi 30,3%. W karbonizacie znajduje się około 40% obj. składników o niskiej porowatości, co wskazuje na niski stopień konwersji węgla. Zawartość popiołu w węglu wynosiła 13,8% i wzrosła do 24,10% w karbonizacie. Na podstawie składu petrograficznego wyjściowego węgla i stopnia konwersji macerałów w karbonizacie można stwierdzić, że węgiel ze złoża Janina jest umiarkowanie odpowiedni do procesu zgazowania.
Twórcy
  • AGH University of Science and Technology, Kraków, Poland; ORCID: 0000-0003-2898-936X
Bibliografia
  • [1] Ammosov et al. 1959 – Ammosov, I.V., Eremin, S.I., Sukhenko, I.S. and Oshurkova, Y. 1959. Calculation of coking charges on the basis of petrographic characteristics of coals. Koks Khim 2, pp. 9–12.
  • [2] Bielowicz, B. 2013. Petrographic composition of Polish lignite and its possible use in a fluidized bed gasification process. International Journal of Coal Geology 116–117, pp. 236–246.
  • [3] Borrego et al. 1997 – Borrego, A.G., Alvarez, D. and Menéndez, R., 1997. Effects of Inertinite Content in Coal on Char Structure and Combustion. Energy & Fuels 11, pp. 702–708.
  • [4] Chmielniak et al. 2015 – Chmielniak, T., Sobolewski, A. and Tomaszewicz, G. 2015. CO2-Enhanced coal gasification. Experience of the Institute for Chemical Processing of Coal (Zgazowanie węgla przy wykorzystaniu CO2 jako czynnika zgazowującego). Doświadczenia IChPW. Przemysł chemiczny 1, pp. 16–22 (in Polish).
  • [5] Collot, A.-G. 2006. Matching gasification technologies to coal properties. International Journal of Coal Geology 65, pp. 191–212.
  • [6] Czerski et al. 2017 – Czerski, G., Zubek, K., Grzywacz, P. and Porada, S. 2017. Effect of Char Preparation Conditions on Gasification in a Carbon Dioxide Atmosphere. Energy & Fuels 31, pp. 815–823.
  • [7] Everson et al. 2008 – Everson, R.C., Neomagus, H.W.J.P., Kaitano, R., Falcon, R. and du Cann, V.M. 2008. Properties of high ash coal-char particles derived from inertinite-rich coal: II. Gasification kinetics with carbon dioxide. Fuel 87, pp. 3403–3408.
  • [8] Furimsky et al. 1990 – Furimsky, E., Palmer, A.D.D., Kalkreuth, W.D.D., Cameron, A.R.R. and Kovacik, G. 1990. Prediction of coal reactivity during combustion and gasification by using petrographic data. Fuel Processing Technology 25, pp. 135–151.
  • [9] Higman, C.and van der Burgt, M. 2008. Gasification. Gulf Professional Pub./Elsevier Science 456 pp.
  • [10] Hower et al. 1999 – Hower, J.C., Rathbone, R.F., Robertson, J.D., Peterson, G. and Trimble, A.S. 1999. Petrology, mineralogy, and chemistry of magnetically-separated sized fly ash. Fuel 78, pp. 197–203.
  • [11] Kalkreuth et al. 2005 – Kalkreuth, W., Borrego, A.G., Alvarez, D., Menendez, R., Osório, E., Ribas, M., Vilela, A. and Alves, T.C. 2005. Exploring the possibilities of using Brazilian subbituminous coals for blast furnace pulverized fuel injection. Fuel 84, pp. 763–772.
  • [12] Kruszewska, K.J. 1998. The reactivity of pseudovitrinite in some coals. Fuel 77, pp. 1655–1661.
  • [13] Kwiecińska, B. and Petersen, H.I., 2004. Graphite, semi-graphite, natural coke, and natural char classification-ICCP system. International Journal of Coal Geology 57, pp. 99–116.
  • [14] Lester et al. 2010 – Lester, E., Alvarez, D., Borrego, A.G., Valentim, B., Flores, D., Clift, D.A., Rosenberg, P., Kwiecinska, B., Barranco, R., Petersen, H.I., Mastalerz, M., Milenkova, K.S., Panaitescu, C., Marques, M.M., Thompson, A., Watts, D., Hanson, S., Predeanu, G., Misz, M. and Wu, T. 2010. The procedure used to develop a coal char classification – Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology. International Journal of Coal Geology 81, pp. 333–342.
  • [15] Lu et al. 2000 – Lu, L., Sahajwalla, V. and Harris, D., 2000. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy and Fuels 14, pp. 869–876.
  • [16] Malumbazo et al. 2011 – Malumbazo, N., Wagner, N.J., Bunt, J.R., Van Niekerk, D. and Assumption, H. 2011. Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit. Fuel Processing Technology 92, pp. 743–749.
  • [17] Malumbazo et al. 2012 – Malumbazo, N., Wagner, N.J.J. and Bunt, J.R.R. 2012. The petrographic determination of reactivity differences of two South African inertinite-rich lump coals. Journal of Analytical and Applied Pyrolysis 93, pp. 139–146.
  • [18] Oboirien et al. 2011 – Oboirien, B.O., Engelbrecht, A.D., North, B.C., Du Cann, V.M., Verryn, S. and Falcon, R. 2011. Study on the structure and gasification characteristics of selected South African bituminous coals in fluidised bed gasification. Fuel Processing Technology 92, pp. 735–742.
  • [19] Oboirien et al. 2012 – Oboirien, B.O., Engelbrecht, A.D., North, B.C., Du Cann, V.M. and Falcon, R. 2012. Textural properties of chars as determined by petrographic analysis: Comparison between air-blown, oxygen-blown and oxygen-enriched gasification. Fuel 101, pp. 16–22.
  • [20] Pickel et al. 2017 – Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B.J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P. and Wagner, N. 2017. Classification of liptinite – ICCP System 1994. International Journal of Coal Geology 169, pp. 40–61.
  • [21] Porada et al. 2013 – Porada, S., Czerski, G., Dziok, T. and Grzywacz, P., 2013. Assessment of coal reactivity in the process of steam gasification in Poland (Ocena reaktywności polskich węgli w procesie zgazowania parą wodną). Przegląd Górniczy 69, 2, pp. 184–193 (in Polish).
  • [22] Porada et al. 2014 – Porada, S., Dziok, T., Czerski, G. and Grzywacz, P. 2014. Comparison of the selected hard coals reactivity values in relation to water vapour (Porównanie reaktywności wybranych węgli kamiennych względem pary wodnej). Przegląd Górniczy 70, 11, pp. 127–131 (in Polish).
  • [23] Stach et al. 1982 – Stach, E., Murchison, D., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. 1982. Stach’s Textbook of coal petrology. Book. Borntraeger.
  • [24] Sun et al. 2003 – Sun, Q., Li, W., Chen, H. and Li, B. 2003. The variation of structural characteristics of macerals during pyrolysis. Fuel 82, pp. 669–676.
  • [25] Taylor, G.H. and Glick, D.C. 1998. Organic petrology: a new handbook incorporating some revised parts of Stach’s Textbook of coal petrology. Gebrüder Borntraeger.
  • [26] UN-ECE 1998. International Classification of In-Seam Coals Symbol Number: ENERGY/1998/19 [WWW Document].
  • [27] van Krevelen, D.W. 1993. Coal-typology, physics, chemistry, constitution. Elsevier.
  • [28] Wagner et al. 2008 – Wagner, M., Lipiarski, I. and Misiak, J. 2008. A petrographic atlas of subbituminous and bituminous coal from the Polish deposits and from uneconomic occurrences.
  • [29] Wagner et al. 2008 – Wagner, N.J.J., Matjie, R.H.H., Slaghuis, J.H.H. and van Heerden, J.H.P.H.P. 2008. Characterization of unburned carbon present in coarse gasification ash. Fuel 87, pp. 683–691.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7507051b-2ae4-462e-a5cc-718d8e5cefed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.