PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Ultrasound to Identify Microstructure-Property Relationships in (AlN + WC) Fabricated with Electroless Ni Producing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve the properties of the materials produced by the powder metallurgy method, first of all, powders (16.59% AlN + 6.63% WC) were coated with nickel (Ni) by electroless method, and then box boriding, which is one of the most widely used surface coating methods, was applied. A composite formed with (16.59% AlN + 6.63% WC)76.7Ni was prepared under the Ar shroud in the temperature range of 1000-1400°C. Pulse-echo technique was used for ultrasonic velocity measurements on Ni coated (16.59% AlN + 6.63% WC) samples. It is aimed to examine the change of physical, mechanical and ultrasonic properties of the obtained ceramic-metal composites depending on different sintering temperatures. In addition, the samples were characterized by mechanical and metallographic examination. The results show that the longitudinal and transverse ultrasonic velocity values and ultrasonic modulus (shear, bulk, Young’s etc.) values increase simultaneously with the increase of sintering temperature. The highest microhardness value was observed in composite samples sintered at 1400°C and its value was 1150.80 Hv. The increased strength is mainly due to grain refinement and strong interfacial bonding between Ni particles and AlN and WC matrix.
Twórcy
  • Afyon Kocatepe University, Science and Literature Faculty, Physics Dept., 03200, Afyonkarahisar, Turkey
  • Afyon Kocatepe University, Engineering Faculty, Electrical Engineering Dept., 03200, Afyonkarahisar, Turkey
autor
  • Afyon Kocatepe University, Technology Faculty, Metallurgy and Materials Engineering Dept., 03200, Afyonkarahisar, Turkey
Bibliografia
  • [1] A. Yönetken, Fabrication of Electroless Ni Plated Fe-Al2O3 Ceramic-Metal Matrix Composites. Trans. Indian Inst. Met. 68 (5), 675-681 (2015). DOI: https://doi.org/10.1007/s12666-014-0497-1
  • [2] B. Oraon, G. Majumdar, B. Ghosh, Application of Response Surface Method for Predicting Electroless Nickel Plating. Mater. Des. 27 (10), 1035-1045 (2006). DOI: https://doi.org/10.1016/j.matdes.2005.01.025
  • [3] R.C. Agarwala, V. Agarwala, Electroless Alloy/Composite Coatings: A review. Sadhana 28 (3-4), 475-493 (2003). DOI: https://doi.org/10.1007/BF02706445
  • [4] Y. Chen, M. Cao, Q. Xu, J. Zhu, Electroless Nickel Platting on Silicon Carbide Nanoparticles. Surf. Coat. Technol. 172 (1), 90-94 (2003). DOI: https://doi.org/10.1016/S0257-8972(03)00320-7
  • [5] L. Cong, Y. Yanguo, L. Congmin, X. Ming, L. Rongrong, C. Qi, Preparation and Properties of Lead-Free Copper Matrix Composites by Electroless Plating and Mechanical Alloying. Wear 488-489, 204164 (2022). DOI: https://doi.org/10.1016/j.wear.2021.204164
  • [6] R. Ünal, I.H. Sarpün, H.A. Yalım, A. Erol, T. Özdemir, S. Tuncel, The Mean Grain Size Determination of Boron Carbide (B4C) - Aluminium (Al) and Boron Carbide (B4C) - Nickel (Ni) Composites by Ultrasonic Velocity Technique. Mater. Charact. 56 (3), 241-244 (2006). DOI: https://doi.org/10.1016/j.matchar.2005.11.006
  • [7] A. Yönetken, V.Ö. Bilici, Ultrasonic and Mechanical Characterization of Borided Ceramic-Metal Composite. Russ. J. Nondestruct. Test. 58 (9), 779-789 (2022). DOI: https://doi.org/10. 1134/S1061830922090091
  • [8] L. Bonin, V. Vitry, F. Delaunois, Inorganic Salts Stabilizers Effect in Electroless Nickel-Boron Plating: Stabilization Mechanism and Microstructure Modification. Surf. Coat. Technol. 401, 126276 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.126276
  • [9] K. Krishnaveni, N. Sankara, S.K. Seshadri, Electrodeposited Ni-B Coatings: Formation and Evaluation of Microhardness and Wear Resistance. Mater. Chem. Phys. 99 (2-3), 300-308 (2006). DOI: https://doi.org/10.1016/j.matchemphys.2005.10.028
  • [10] B. Oraon, G. Majumdar, B. Ghosh, Parametric Optimization and Prediction of Electroless Ni-B Deposition, Mater. Des. 28 (7), 2138-2147 (2007). DOI: https://doi.org/10.1016/j.matdes.2006.05.017
  • [11] W.P. Ye, Z.L. Huang, Q.X. Zhang, Q.Y. Zhang, Microstructure and of Mechanics Microwave Boriding. J. Wuhan Univ. Technol. Mater. Sci. Ed. 23 (4), 528-531 (2008). DOI: https://doi.org/10.1007/s11595-006-4528-6
  • [12] V. Vitry, L. Bonin, Effect of Temperature on Ultrasound-Assisted Electroless Nickel-Boron Plating. Ultrason. Sonochem. 56, 327-336 (2019). DOI: https://doi.org/10.1016/j.ultsonch.2019.04.027
  • [13] J. Krautkrämer, H. Krautkrämer, Ultrasonic Testing of Materials. Springer-Verlag, New York (1990).
  • [14] G.Y. Li, Z.Y. Zhang, J. Qian, Y. Zheng, W. Liu, H. Wu, Y. Cao, Mechanical Characterization of Functionally Graded Soft Materials with Ultrasound Elastography. Phil. Trans. Roy. Soc. A 377, 20180075 (2019). DOI: https://doi.org/10.1098/rsta.2018.0075
  • [15] Y. Zhao, L. Lin, X.M. Li, M.K. Lei, Simultaneous Determination of The Coating Thickness and Its Longitudinal Velocity by Ultrasonic Nondestructive Method. NDT & E. Int. 43, 579-585 (2010). DOI: https://doi.org/10.1016/j.ndteint.2010.06.001
  • [16] A. Kravcov, O.L. Dudchenko, P. Svoboda, P.N. Ivanov, M.V. Sizikov, O.D. Belov, A.A. Gapeev, Broadband Ultrasonic Pulse-Echo Method for Estimation of Local Density of Tungsten Samples. Journal of Physics: Conference Series, V (1172), International Conference on Applied Physics, Power and Material Science 5-6 December 2018, Secunderabad, Telangana, India Citation, J. Phys.: Conf. Ser. 1172, 012064 (2019). DOI: https://doi.org/10.1088/1742-6596/1172/1/012064
  • [17] A. Erol, V. Özkan Bilici, A. Yönetken, Characterization of The Elastic Modulus of Ceramic-Metal Composites with Physical and Mechanical Properties by Ultrasonic Technique. Open Chem. 20, 593-601 (2022). DOI: https://doi.org/10.1515/chem-2022-0180
  • [18] N. Bouslama, Y. Chevalier, J. Bouaziz, F.B. Ayed, Influence of The Sintering Temperature on Young’s Modulus and The Shear Modulus of Tricalcium Phosphate - Fluorapatite Composites Evaluated by Ultrasound Techniques. Mater. Chem. Phys. 141 (1), 289-297 (2013). DOI: https://doi.org/10.1016/j.matchemphys.2013.05.013
  • [19] M. Nazeer, P. Jana, M. Oza Jaydeeokumar, K. Günter Schell, E. C. Bucharsky, T. Laha, S. Roy, Ultrasonic Study of The Elastic Properties of Functionally Graded and Equivalent Monolithic Composites. Mater. Lett. 323, 132594 (2022). DOI: https://doi.org/10.1016/j.matlet.2022.132594
  • [20] Z. Li, Z. Han, X. Jian, W. Shao, Y. Jiao, Y. Cui, Pulse-Echo Acoustic Properties Evaluation Method Using High-Frequency Transducer. Meas. Sci. Technol. 31 (12), 125011 (2020). DOI: https://doi:10.1088/1361-6501/aba0d8
  • [21] V.L.A. Freitas, H.C. Albuquerque, E.M. Silva, A.A. Silva, J.M.R.S. Tavares, Nondestructive Characterization of Microstructures and Determination of Elastic Properties in Plain Carbon Steel Using Ultrasonic Measurements. Mater. Sci. Eng. A 527 (16-17), 4431-4437 (2010). DOI: https://doi.org/10.1016/j.msea.2010.03.090
  • [22] A.M. El-Taher, S.E. Abd El Azeem, A.A. Ibrahiem, Influence of Permanent Magnet Stirring on Dendrite Morphological and Elastic Properties of a Novel Sn-Ag-Cu-Sb-Al Solder Alloy by Ultrasonic Pulse Echo Method. J. Mater. Sci: Mater. Electron. 31, 9630-9640 (2020). DOI: https://doi.org/10.1007/s10854-020-03506-4
  • [23] X. Wang, C. He, H. He, W. Xie, Simulation and Experimental Research on Nonlinear Ultrasonic Testing of Composite Material Porosity. Appl. Acoust. 188, 108528 (2022). DOI: https://doi.org/10.1016/j.apacoust.2021.108528
  • [24] Q. Li, X. Yang, F. Peng, G. Yang, T. Han, L. Fang, Q. Hu, L. Xie, X. Chen, Y. Zou, Elasticity, Mechanical and Thermal Properties of Submicron h-AlN: in-situ High Pressure Ultrasonic Study. J. Eur. Ceram. Soc. 41 (9), 4788-4793 (2021). DOI: https:// doi.org/10.1016/j.jeurceramsoc.2021.03.056
  • [25] R.D. Schmidt, J.E. Ni, E.D. Case, J.S. Sakamoto, D.C. Kleinow, B.L. Wing, R.C. Stewart, E.J. Timm, Room Temperature Young’s Modulus, Shear Modulus, and Poisson’s Ratio of Ce0.9Fe3.5Co0.5 Sb12 and Co0.95Pd0.05Te0.05Sb3 Skutterudite Materials. J. Alloys Compd. 504 (2), 303-309 (2010). DOI: https://doi.org/10.1016/j.jallcom.2010.06.003
  • [26] K. K. Phani, D. Sanyal, The Relations Between the Shear Modulus, The Bulk Modulus and Young’s Modulus for Porous Isotropic Ceramic Materials. Mater. Sci. Eng. 490 (1-2), 305-312 (2008). DOI: https://doi.org/10.1016/j.msea.2008.01.030
  • [27] E. Gregorová, V. Nečina, S. Hříbalová, W. Pabst, Temperature Dependence of Young’s Modulus and Damping of Partially Sintered and Dense Zirconia Ceramics. J. Eur. Ceram. Soc. 40 (5), 2063-2071 (2020). DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.12.064
  • [28] P. Rogl, Phase Diagrams of Ternary Metal-Boron-Carbon Systems. ASM International; MSI, Materials Park, OH; Stuttgart, Germany, (1998), pp. 392.
  • [29] M. Greenfield, G. Wolfe, Powder Metal Technologies and Applications of ASM Handbook. ASM International 7, 492-496 (1998).
  • [30] H.Y. Mehrabani, A. Babakhani, J. Vahdati-khaki, A Discussion on The Formation Mechanism of Tungsten Carbides During Mechanical Milling of CaWO4-Mg-C Mixtures. J. Alloys Compd. 781, 397-406 (2019). DOI: https://doi.org/10.1016/j.jallcom.2018.12.066
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75053f5c-98e0-40d1-822d-625d34017f75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.