PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Evaluation of friction stir welding on the microstructure and mechanical properties of dissimilar aluminum alloys 5083-O and 6061-T6 for automotive applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Friction Stir Welding (FSW) process, employed for joining aluminium alloys, particularly the 5xxx and 6xxx series, is widely utilized in various applications, notably within the automotive industry. These alloy series exhibit properties that render them ideal for manufacturing components such as frames, chassis, and pistons due to their lightweight, strength, and corrosion resistance. FSW is especially advantageous as it presents an environmentally friendly alternative for aluminium welding, characterized by its low melting point, which facilitates precise thermal control during the welding process. This investigation focuses on the impact of FSW process parameters on the microstructure and mechanical properties of 5083-O and 6061-T6 aluminium alloys, Optimal welding conditions were determined to be a tool rotational speed of 1400 RPM, a travel speed of 30 mm/s, and a tool tilt angle of 1°. Under these parameters, a tensile strength efficiency of 75% relative to the 5083-O base material was achieved, with a maximum tensile strength recorded at 203.8449 MPa and a hardness range of 70.1-70.5 HV. Microstructural analysis reveals a clean weld surface devoid of significant defects that could compromise weld quality. The material exhibited equiaxed recrystallized grains in the WN zone under optimal parameters. Conversely, the most vulnerable aspect of the welded joint was consistently identified within the Heat Affected Zone (HAZ) of the 6061-T6 side across all parameter configurations. This susceptibility is attributed to grain growth and the dissolution of Mg2Si precipitates induced by the thermal effects during the FSW process, as corroborated by microphotographic analysis.
Twórcy
  • Mechanical Engineering Department, Diponegoro University, Jalan Prof. Sudarto, S.H, Semarang, 50275, Indonesia
  • Mechanical Engineering Department, Diponegoro University, Jalan Prof. Sudarto, S.H, Semarang, 50275, Indonesia
  • Mechanical Engineering Department, Diponegoro University, Jalan Prof. Sudarto, S.H, Semarang, 50275, Indonesia
  • Department of Mechanical and Mechatronics Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Lot 13149, Block 5 Kuala Baram Land District, CDT 250, 98009 Miri, Sarawak, Malaysia
  • Faculty of Mechanical Engineering, Opole University of Technology, ul. Proszkowska 76, 45-758 Opole, Poland
Bibliografia
  • 1. Zhang W., Xu J. Advanced lightweight materials for Automobiles: A review, Mater. Des. 2022; 221: 110994. https://doi.org/10.1016/j.matdes.2022.110994.
  • 2. Verma S., Kumar V. Optimization of friction stir welding parameters of dissimilar aluminium alloys 6061 and 5083 by using response surface methodology, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021; 235(23): 7009–7020. https://doi.org/10.1177/09544062211005804.
  • 3. Wahid M.A., Siddiquee A.N., Khan Z.A. Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint, Mar. Syst. Ocean Technol. 2020; 15(1): 70–80. https://doi.org/10.1007/s40868-019-00069-w.
  • 4. Devaiah D., Kishore D.K., Laxminarayana D.P. Effect of material location and tool rotational speed on the mechanical properties of dissimilar friction stir welded Aluminum Alloys (5083-H321 to 6061-T6), Bonfring Int. J. Ind. Eng. Manag. Sci. 2016; 6(4): 186–190. https://doi.org/10.9756/bijiems.8311.
  • 5. Thomas W.M. Friction stir welding and related process characteristics, INALCO’98, 7th Int. Conf. Joints Alum. Abington, Cambridge, UK 1998; March: 15–17. Online, Available: https://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-and-related-friction-process-characteristics-april-1998#:~:text=In friction joining and forming,friction welding have been reported.
  • 6. Malopheyev S., Vysotskiy I., Kulitskiy V., Mironov S., Kaibyshev R. Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy, Mater. Sci. Eng.: A. 2016; 662: 136–143. https://doi.org/10.1016/j.msea.2016.03.063.
  • 7. Rajaseelan S.L., Kumarasamy S. Mechanical properties and microstructural characterization of dissimilar friction stir welded AA5083 and AA6061 aluminium alloys, Mechanika 2020; 26(6): 545–552. https://doi.org/10.5755/j01.mech.26.6.25255.
  • 8. Manohar B. Effect of microstructure and mechanical properties of Friction Stir Welded Dissimilar AA5083-AA6061 Aluminium Alloy Joints, Int. J. Res. Eng. Technol. 2016; 5(11): 58–62. https://doi.org/10.15623/ijret.2016.0511011.
  • 9. Bella G. Di., Borsellino C., Chairi M., Campanella D., Buffa G. Effect of rotational speed on mechanical properties of AA5083/AA6082 Friction Stir Welded T-Joints for Naval Applications, MDPI-Metals 2024; 14(12): 1410. https://doi.org/10.3390/met14121410.
  • 10. Jia H., Wu K., Sun Y., Hu F., Chen G. Evaluation of axial force, tool torque and weld quality of friction stir welded dissimilar 6061/5083 aluminum alloys, CIRP J. Manuf. Sci. Technol. 2022; 37: 267–277. https://doi.org/10.1016/j.cirpj.2022.02.003.
  • 11. Devaiah D., Kishore K., Laxminarayana P. Optimal FSW process parameters for dissimilar aluminium alloys (AA5083 and AA6061) Using Taguchi Technique, Mater. Today Proc. 2018; 5(2): 4607–4614. https://doi.org/10.1016/j.matpr.2017.12.031.
  • 12. Mishra R.S., Ma Z.Y. Friction stir welding and processing, Mater. Sci. Eng. R. Reports 2005; 50(1–2): 1–78. https://doi.org/10.1016/j.mser.2005.07.001.
  • 13. ASTM International, Standard Practice for Microetching Metals and Alloys ASTM E-407, 2016; 07 no. Reapproved 2015: 1–22. https://doi.org/10.1520/E0407-07R15E01.2.
  • 14. ASTM International, ASTM E8/E8M standard test methods for tension testing of metallic materials 1, Annu. B. ASTM Stand. 4, 2010; no. C: 1–27. https://doi.org/10.1520/E0008.
  • 15. Elangovan K., Balasubramanian V. Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy, Mater. Sci. Eng.: A 2007; 459(1–2): 7–18. https://doi.org/10.1016/j.msea.2006.12.124.
  • 16. Osorio Díaz M.A., Franco Arenas F., Unfried-Silgado J. Effects of process parameters on mechanical properties and microstructure of AA6063-T6 and AA5052-H32 dissimilar Friction Stir Welded joints, Soldag. e Insp. 2024; 29: 1–11. https://doi.org/10.1590/0104-9224/SI29.11.
  • 17. Malik V., Kailas S.V. Understanding the effect of tool geometrical aspects on intensity of mixing and void formation in friction stir process, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021; 235(4): 744–757. https://doi.org/10.1177/0954406220938410.
  • 18. Xiao S., Deng Y., Zeng J., Zhang W., Huang L. Effect of heat input on microstructure and mechanical properties of Friction Stir Welded AA2024 and AA7075 Dissimilar Alloys, J. Mater. Eng. Perform. 2021; 30(11): 7989–7997. https://doi.org/10.1007/s11665-021-06000-y.
  • 19. Hirata T. et al. Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Mater. Sci. Eng.: A. 2007; 456(1–2): 344–349. https://doi.org/10.1016/j.msea.2006.12.079.
  • 20. Kumar K.K., Kumar A., Nagu K. Mechanical and corrosion behaviour of friction stir welded 5083–6061 aluminium alloy joints: effect of base material position, Trans. Indian Inst. Met. 2023; 76(7): 1985–1996. https://doi.org/10.1007/s12666-023-02906-4.
  • 21. Ghaffarpour M., Aziz A., Hejazi T.H. Optimization of friction stir welding parameters using multiple response surface methodology, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017; 231(7): 571–583. https://doi.org/10.1177/1464420715602139.
  • 22. Baghdadi A.H., Sajuri Z., Keshtgar A., Sharif N.M., Rajabi A. Mechanical property improvement in dissimilar Friction Stir Welded Al5083/Al6061 Joints: Effects of post-weld heat treatment and abnormal grain growth, MDPI-Materials 2022; 15(1): 288. https://doi.org/10.3390/ma15010288.
  • 23. Verma M., Ahmed S., Saha P. Challenges, process requisites/inputs, mechanics and weld performance of dissimilar micro-friction stir welding (dissimilar μFSW): A comprehensive review, J. Manuf. Process. 2021; 68, Part A: 249–276. https://doi.org/10.1016/j.jmapro.2021.05.045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74fc599c-a866-4031-af63-eec3113c77f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.