Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the energy absorption capacities of selected cellular topologies under quasi-static loading conditions. Twenty topologies with nearly identical relative densities belonging to 4 groups were examined: honeycomb, re-entrant, bioinspired and chiral. The topologies were modeled using an experimentally validated numerical ABSplus model and subsequently subjected to in-plane uniaxial compression tests. The findings revealed the topologies with the most favorable energy absorption parameters and the main deformation mechanisms. The topologies were classified by mechanism, and a parametric study of basic material properties, namely modulus of elasticity, yield stress, and ductility, was performed for a representative topology from each mechanism. The results indicated that the honeycomb group topologies were characterized by the largest average absorbed energy, and yield stress was found to have the greatest impact on energy absorption efficiency regardless of the main deformation mechanism.
Czasopismo
Rocznik
Tom
Strony
art. no. e111, 2024
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00‑908 Warsaw, Poland
autor
- Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00‑908 Warsaw, Poland
autor
- Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego 2 Street, 00‑908 Warsaw, Poland
Bibliografia
- 1. Qi C, Remennikov A, Pei LZ, Yang S, Yu ZH, Ngo TD. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations. Compos Struct. 2017;180:161-78. https://doi.org/10.1016/j.compstruct.2017.08.020.
- 2. Xu T, Liu N, Yu Z, Xu T, Zou M. Crashworthiness design for bionic bumper structures inspired by cattail and bamboo. Appl Bionics Biomech. 2017. https://doi.org/10.1155/2017/5894938.
- 3. Jackowski J, Żmuda M, Wieczorek M. Comparative analysis of small size non-pneumatic tires and pneumatic tires - radial stiffness and hysteresis, selected parameters of the contact patch. Mainten Reliab 2023;25:2023. https://doi.org/10.17531/EIN/167362.
- 4. Kaczynski P, Ptak M, Wilhelm J, Fernandes FAO, de Sousa RJA. High-energy impact testing of agglomerated cork at extremely low and high temperatures. Int J Impact Eng. 2019;126:109-16. https://doi.org/10.1016/J.IJIMPENG.2018.12.001.
- 5. Kurzynowski T, Pawlak A, Smolina I. The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch Civ Mech Eng. 2020;20:1-13. https://doi.org/10.1007/S43452-020-00033-1/TABLES/3.
- 6. Leary M, Mazur M, Williams H, Yang E, Alghamdi A, Lozanovski B, et al. Inconel 625 lattice structures manufactured by selective laser melting (SLM): mechanical properties, deformation and failure modes. Mater Des. 2018;157:179-99. https://doi.org/10.1016/j.matdes.2018.06.010.
- 7. Bai L, Zhang J, Chen X, Yi C, Chen R, Zhang Z. Configuration optimization design of Ti6Al4V lattice structure formed by SLM. Materials 2018. https://doi.org/10.3390/ma11101856.
- 8. Rad MS, Hatami H, Ahmad Z, Yasuri AK. Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures. Acta Mech. 2019;230:2171-85. https://doi.org/10.1007/s00707-019-02387-x.
- 9. Kladovasilakis N, Tsongas K, Tzetzis D. Mechanical and fea-assisted characterization of fused filament fabricated triply periodic minimal surface structures. J Compos Sci 2021;5. https://doi.org/10.3390/jcs5020058.
- 10. Peng C, Fox K, Qian M, Nguyen-Xuan H, Tran P. 3D printed sandwich beams with bioinspired cores: mechanical performance and modelling. Thin-Walled Struct. 2021;161: 107471. https://doi.org/10.1016/j.tws.2021.107471.
- 11. L. J. Gibson, M. F. Ashby GSSinni. The mechanics of two-dimensional cellular materials. Proc Roy Soc Lond Ser A 1982;382.
- 12. Li Z, Yang Q, Chen W, Hao H, Fang R, Cui J. Dynamic compressive properties of reinforced and kirigami modified honeycomb in three axial directions. Thin-Walled Struct 2022;171. https://doi.org/10.1016/J.TWS.2021.108692.
- 13. Tiwari G, Thomas T, Khandelwal RP. Influence of reinforcement in the honeycomb structures under axial compressive load. Thin-Walled Struct. 2018;126:238-45. https://doi.org/10.1016/j.tws.2017.06.010.
- 14. Zhao L, Zheng Q, Fan H, Jin F. Hierarchical composite honeycombs. Mater Des. 2012;40:124-9. https://doi.org/10.1016/j.matdes.2012.03.009.
- 15. Wu Y, Sun L, Yang P, Fang J, Li W. Energy absorption of additively manufactured functionally bi-graded thickness honeycombs subjected to axial loads. Thin-Walled Struct. 2021;164: 107810. https://doi.org/10.1016/j.tws.2021.107810.
- 16. Dhari RS, Javanbakht Z, Hall W. On the inclined static loading of honeycomb re-entrant auxetics. Compos Struct. 2021;273: 114289. https://doi.org/10.1016/j.compstruct.2021.114289.
- 17. Ingrole A, Hao A, Liang R. Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des. 2017;117:72-83. https://doi.org/10.1016/j.matdes.2016.12.067.
- 18. Wu Y, Liu Q, Fu J, Li Q, Hui D. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels. Compos B Eng. 2017;121:122-33. https://doi.org/10.1016/j.compositesb.2017.03.030.
- 19. Ha NS, Lu G, Xiang X. High energy absorption efficiency of thin-walled conical corrugation tubes mimicking coconut tree configuration. Int J Mech Sci. 2018;148:409-21. https://doi.org/10.1016/j.ijmecsci.2018.08.041.
- 20. Yang X, Ma J, Shi Y, Sun Y, Yang J. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Mater Des. 2017;135:275-90. https://doi.org/10.1016/j.matdes.2017.09.040.
- 21. Tan C, Zou J, Li S, Jamshidi P, Abena A, Forsey A, et al. Additive manufacturing of bio-inspired multi-scale hierarchically strengthened lattice structures. Int J Mach Tools Manuf. 2021;167: 103764. https://doi.org/10.1016/j.ijmachtools.2021.103764.
- 22. Li Q, Wu L, Hu L, Li E, Zou T, Liu X. Parametric analysis on axial compression performance of bio-inspired porous lattice structures. Thin-Walled Struct. 2023;182: 110223. https://doi.org/10.1016/j.tws.2022.110223.
- 23. Zhang W, Yin S, Yu TX, Xu J. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int J Impact Eng. 2019;125:163-72. https://doi.org/10.1016/j.ijimpeng.2018.11.014.
- 24. Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, et al. Elastic constants of 3-, 4- and 6-connected chiral and antichiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol. 2010;70:1042-8. https://doi.org/10.1016/j.compscitech.2009.07.009.
- 25. Wu W, Tao Y, Xia Y, Chen J, Lei H, Sun L, et al. Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mech Lett. 2017;16:18-32. https://doi.org/10.1016/j.eml.2017.08.004.
- 26. Hu LL, Wu ZJ, Fu MH. Mechanical behavior of anti-trichiral honeycombs under lateral crushing. Int J Mech Sci. 2018;140:537-46. https://doi.org/10.1016/j.ijmecsci.2018.03.039.
- 27. Baranowski P, Płatek P, Antolak-Dudka A, Sarzyński M, Kucewicz M, Durejko T, et al. Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: experimental testing and simulation. Addit Manuf. 2019;25:307-16. https://doi.org/10.1016/j.addma.2018.11.018.
- 28. Konarzewski M, Kucewicz M, Baranowski P, Stankiewicz M, Konarzewski M, Płatek P, et al. Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions. Thin-Walled Struct. 2019;145. https://doi.org/10.1016/j.tws.2019.106385.
- 29. Kucewicz M, Baranowski P, Małachowski J. A method of failure modeling for 3D printed cellular structures. Mater Des 2019;174. https://doi.org/10.1016/j.matdes.2019.107802.
- 30. Liu Y, Zhang XC. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int J Impact Eng. 2009;36:98-109. https://doi.org/10.1016/j.ijimpeng.2008.03.001.
- 31. Han J, Chen H, Xu X, Li Z, Chen Q, Gu H, et al. Mechanical characterization of a novel gradient thinning triangular honeycomb. Thin-Walled Struct. 2023;188: 110862. https://doi.org/10.1016/j.tws.2023.110862.
- 32. Hamzehei R, Kadkhodapour J, Anaraki AP, Rezaei S, Dariushi S, Rezadoust AM. Octagonal auxetic metamaterials with hyperelastic properties for large compressive deformation. Int J Mech Sci. 2018;145:96-105. https://doi.org/10.1016/j.ijmecsci.2018.06.040.
- 33. Hedayati R, Sadighi M, Mohammadi-Aghdam M, Zadpoor AA. Mechanical properties of additively manufactured octagonal honeycombs. Mater Sci Eng C. 2016;69:1307-17. https://doi.org/10.1016/j.msec.2016.08.020.
- 34. Thomas T, Tiwari G. Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb. Vacuum. 2019;166:364-9. https://doi.org/10.1016/j.vacuum.2018.10.057.
- 35. Zhang D, Fei Q, Liu J, Jiang D, Li Y. Crushing of vertex-based hierarchical honeycombs with triangular substructures. Thin-Walled Struct. 2020;146: 106436. https://doi.org/10.1016/j.tws.2019.106436.
- 36. Qiu XM, Zhang J, Yu TX. Collapse of periodic planar lattices under uniaxial compression, part I: quasi-static strength predicted by limit analysis. Int J Impact Eng. 2009;36:1223-30. https://doi.org/10.1016/j.ijimpeng.2009.05.011.
- 37. Kalubadanage D, Remennikov A, Ngo T, Qi C. Close-in blast resistance of large-scale auxetic re-entrant honeycomb sandwich panels. J Sandwich Struct Mater. 2021;23:4016-53. https://doi.org/10.1177/1099636220975450.
- 38. Choudhry NK, Panda B, Kumar S. In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing. Compos B Eng. 2022;228: 109437. https://doi.org/10.1016/j.compositesb.2021.109437.
- 39. Xiong J, Gu D, Chen H, Dai D, Shi Q. Structural optimization of re-entrant negative Poisson’s ratio structure fabricated by selective laser melting. Mater Des. 2017;120:307-16. https://doi.org/10.1016/j.matdes.2017.02.022.
- 40. Günaydın K, Rea C, Kazancı Z. Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) lattice structures by using multi-material reinforcements. Addit Manuf. 2022;59: 103076. https://doi.org/10.1016/j.addma.2022.103076.
- 41. Wang H, Lu Z, Yang Z, Li X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Compos Struct. 2019;208:758-70. https://doi.org/10.1016/j.compstruct.2018.10.024.
- 42. Wei L, Zhao X, Yu Q, Zhu G. Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb. Compos Struct. 2021;267: 113850. https://doi.org/10.1016/j.compstruct.2021.113850.
- 43. An MR, Wang L, Liu HT, Ren FG. In-plane crushing response of a novel bidirectional re-entrant honeycomb with two plateau stress regions. Thin-Walled Struct. 2022;170: 108530. https://doi.org/10.1016/j.tws.2021.108530.
- 44. Fang J, Sun G, Qiu N, Pang T, Li S, Li Q. On hierarchical honeycombs under out-of-plane crushing. Int J Solids Struct. 2018;135:1-13. https://doi.org/10.1016/j.ijsolstr.2017.08.013.
- 45. Chen Q, Pugno NM. In-plane elastic properties of hierarchical nano-honeycombs: the role of the surface effect. Eur J Mech A/Solids. 2013;37:248-55. https://doi.org/10.1016/j.euromechsol.2012.06.003.
- 46. Fernandes MC, Aizenberg J, Weaver JC, Bertoldi K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat Mater. 2021;20:237-41. https://doi.org/10.1038/s41563-020-0798-1.
- 47. Wang P, Yang F, Fan H, Lu G. Bio-inspired multi-cell tubular structures approaching ideal energy absorption performance. Mater Des. 2023;225: 111495. https://doi.org/10.1016/j.matdes.2022.111495.
- 48. Li Y, Hu D, Yang Z. Crashworthiness design of a sponge-inspired multicell tube under axial crushing. Int J Mech Sci. 2023;244: 108070. https://doi.org/10.1016/j.ijmecsci.2022.108070.
- 49. Hu D, Wang Y, Song B, Dang L, Zhang Z. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos B Eng. 2019;162:21-32. https://doi.org/10.1016/j.compositesb.2018.10.095.
- 50. Chen BC, Zou M, Liu GM, Song JF, Wang HX. Experimental study on energy absorption of bionic tubes inspired by bamboo structures under axial crushing. Int J Impact Eng. 2018;115:48-57. https://doi.org/10.1016/j.ijimpeng.2018.01.005.
- 51. He Q, Feng J, Chen Y, Zhou H. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading. J Sandwich Struct Mater. 2020;22:771-96. https://doi.org/10.1177/1099636218772295.
- 52. Lorato A, Innocenti P, Scarpa F, Alderson A, Alderson KL, Zied KM, et al. The transverse elastic properties of chiral honeycombs. Compos Sci Technol. 2010;70:1057-63. https://doi.org/10.1016/j.compscitech.2009.07.008.
- 53. Gao D, Wang S, Zhang M, Zhang C. Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure. Compos Struct. 2021;267: 113922. https://doi.org/10.1016/j.compstruct.2021.113922.
- 54. Hu LL, Luo ZR, Zhang ZY, Lian MK, Huang LS. Mechanical property of re-entrant anti-trichiral honeycombs under large deformation. Compos Part B Eng. 2019;163:107-20. https://doi.org/10.1016/j.compositesb.2018.11.010.
- 55. Qi C, Jiang F, Yu C, Yang S. In-plane crushing response of tetrachiral honeycombs. Int J Impact Eng. 2019;130:247-65. https://doi.org/10.1016/j.ijimpeng.2019.04.019.
- 56. Johnston R, Kazancı Z. Analysis of additively manufactured (3D printed) dual-material auxetic structures under compression. Addit Manuf. 2021;38: 101783. https://doi.org/10.1016/j.addma.2020.101783.
- 57. Hallquist J. LS-DYNAR theory manual. 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74fa0575-1b27-4686-8a72-257057e25756
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.