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Abstract: Various classes of algorithms solving optimization problems have some set of
parameters. Setting them to appropriate values can be as important to results quality as
choosing right algorithm components. Parameter calibration can be a complex optimization
problem itself and many meta-algorithms were proposed to deal with it in a more automatic
way. This paper presents automatic parameter tuning of an evolutionary algorithm solving
the Orienteering Problem. ParamsILS method was chosen as a tuner. Obtained results show
the importance of appropriate parameter setting in evolutionary algorithms: tuned algorithm
achieved very high-quality solutions on known Orienteering Problem benchmarks.
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1. Introduction

The name Orienteering Problem (OP) derives from sport game of orienteering. Com-
petitors start from a given point and have to reach another point within a prescribed
time frame. In the meantime they can visit other control points and collect scores. The
winner is the competitor who finishes with the highest score. The OP is an NP-hard
optimization problem [4] and belongs to the family of Travelling Salesman Prob-
lems with Profits (TSPP) [26]. Its alternative name is Selective Travelling Salesman
Problem (STSP) [15]. The OP has many practical applications including tourist trip
planning, logistics and others. Various approaches (both exact and approximate) were
proposed to solve the OP but because of its computational hardness most published
methods were approximate. Evolutionary algorithms (EA) are among best known
metaheuristics for solving optimization problems. When it comes to results quality
EA parameters setting can be as important as choosing recombination operators. The
paper presents parameter tuning (with ParamsILS method [30]) of an evolutionary al-
gorithm which solves the Orienteering Problem. The article is organized as follows.
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Section 2 presents mathematical definition of the OP. Section 3 presents a review
of the literature on the OP. Overview of parameter tuning methods is presented in
section 4. In Section 5 the structure of the proposed evolutionary algorithm (EA) is
described. Section 6 contains description of EA parameter tuning and experimental
results. Conclusions are drawn and further work is suggested in Section 7.

2. Mathematical definition of the Orienteering Problem

Given a weighted graph (each edge has a non-negative cost and each vertex has some
non-negative profit) the purpose of the Orienteering Problem (OP) is to find a simple
path (or cycle) between a given pair of vertices (s - start vertex, e - end vertex) that
maximizes total collected profit (sum of profits of visited vertices). The total cost of
the path (sum of costs of visited edges) is limited by a given constraint (Tmax). Let wi j

be a cost associated with edge (i, j) and pi be a profit associated with vertex i. Let xi j

be a binary variable equal to 1 if a solution contains edge (i, j) and 0 otherwise. Let
yi be a binary variable equal to 1 if a solution contains vertex i and 0 otherwise. Let
ri be a position of vertex i in a solution - it is defined only for vertices included in a
path. The OP can be formulated mathematically:

max ∑
i∈V

∑
j∈V

(pi · xi j) (1)

∑
i∈V

∑
j∈V

wi j · xi j ≤ Tmax (2)

∑
j∈V

xs j = ∑
i∈V

xie = 1 (3)

∀
k∈V\{s,e}

(∑
i∈V

xik = ∑
j∈V

xk j ≤ 1) (4)

rs = 1 (5)

∀
i∈V

(yi = 1 ⇒ 1 <= ri <= n) (6)

∀
i∈V, j∈V\{s},

(xi j = 1 ⇒ r j = ri +1) (7)

Maximization of total profit is associated with formula 1 and constraint 2 relates
to maximal path cost which cannot exceed Tmax. Constraint 3 indicates that the path
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starts in vertex s and ends in vertex e while formula 4 implies that all other vertices
can occur at most once on the path. Remaining constraints guarantee that the solution
is a continuous path without subcycles.

3. Literature review of the Orienteering Problem

The Orienteering Problem was introduced by Tsiligirides [3]. Because of its NP-
hardness exact solutions for the OP are only feasible in short time for graphs with
a small number of nodes. The exact algorithms applied for the OP are the branch-
and-cut and branch-and-bound methods. Fischetti et al. [14] have provided an exact
solution tested for graphs with up to 500 vertices, and Gendreau et al. [12] have used
the branch-and-cut method to exactly solve examples with up to 300 vertices. Ramesh
et al. [8] have extended the branch-and-bound method via Lagrangian relaxation and
have used it to solve examples with up to 150 control points. Exact algorithms for the
OP usually need large amount of time to solve medium or large instances. Therefore,
for practical applications, many researchers propose approximate methods to tackle
the OP, based on a variety of approaches.

Tsiligirides [3] presents his S-algorithm for the OP, based on the Monte Carlo
method. The algorithm constructs a large number of routes and chooses the one
with the maximum profit. Then a deterministic heuristic algorithm partitions the ge-
ographic area into concentric circles and restricts the routes allowed to the sectors
defined by the circles.

Golden et al. [4] introduced a three-step iterative heuristic involving route con-
struction using a greedy algorithm and a centre-of-gravity heuristic. Ramesh et al.
[7] propose a four-phase heuristic. After the best solution is chosen from iterations
over a set of three phases (node insertion, edge exchange and node deletion), a fourth
phase is entered, in which an attempt is made to insert unvisited nodes into the tour.

Wang et al. [27] use a neural network approach to solve the OP. They derive an
energy function and a learning algorithm for a modified, continuous Hopfield neu-
ral network. Chao et al. [11] introduced a two-step iterative heuristic consisting of
initialization and improvement steps. Tasgetiren [16] worked out the first genetic al-
gorithm for the OP. The algorithm included tournament selection, injection crossover
and mutation using elements of the local search method (add, omit, replace and swap
operators). He also proposed a function that penalized infeasible solutions.

Gendreau et al. [13] present a tabu search heuristic for the OP. The algorithm
iteratively inserts clusters of nodes into the current tour or removes a chain of nodes.
Compared to the previous approaches, this method reduces the likelihood of getting
trapped in a local optimum. Tests performed by the authors on randomly generated
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instances with up to 300 nodes show that the algorithm yields very high-quality so-
lutions.

Vansteenwegen et al. [29] developed the guided local search method (GLS) for
the Team Orienteering Problem (TOP), which modifies other methods to reduce the
likelihood of becoming trapped in a local optimum. The GLS meta-heuristic method
yields satisfactory results for small-sized networks and is used in the Mobile Tourist
Guide [32]. Solutions for the TOP generate m routes as results and total collected
profit is maximized. Each node can be included at most one time in m resultant routes
in the TOP. For m = 1 the GLS solves classic Orienteering Problem.

Schilde et al. [28] published two metaheuristics: Variable Neighbour Search
(VNS) and Ant Colony Optimization (ACO). In relatively short execution time both
algorithms achieved on benchmarks better average results than Chao’s method [11]
and GLS [29].

Souffriau et al. [31] applied Greedy Randomized Adaptive Search Procedure
(GRASP) to solve the TOP. Campos et al. [35] successfully applied a path relink-
ing (PR) method to GRASP to solve the OP. In the GRASP algorithm they propose
an initial path containing only a starting and an ending vertex. Next, based on the
ratio between greediness and randomness (four methods are possible), vertices are
inserted one by one for as long as Tmax is not exceeded. In the next step, the local
search procedure (exchange and insert phase) attempts to reduce the length of the
path and increase its total profit. In GRASPwPR a set of different solutions is created
with the GRASP method, and path relinking is performed for each pair of solutions
P and Q: the P path is gradually transformed into the Q by exchanging elements be-
tween P and Q. GRASPwPR results obtained on benchmark instances are one of the
best among approximate solutions.

Author’s Orienteering Problem research concentrated mainly on EA-based OP
solutions for networks larger than known OP benchmarks (up to 908 vertices - net-
work of cities in Poland) [33][34][36]. Obtained results showed advantage of evo-
lutionary algorithms over known meta-heuristics (GLS, GRASP, GRASPwPR) for
larger OP instances. In addition, experiments were also performed on Chao and Tsili-
girides benchmark sets [39] and EA results (compared GLS and Chao methods) were
promising. Author’s purpose is to develop very effective metaheuristic not only for
the OP but also for the Time-Dependent Orienteering Problem [38].

4. Overview of parameter tuning methods

Setting algorithm parameters adhoc can be troublesome and sometimes can result
in poor quality of algorithm solutions. Various methods were proposed to deal with
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this issue in a more automatic way. The simplest tuners are based on sampling of
multi-dimensional parameter space. After testing the algorithm on a chosen set of
parameter vectors the best vector is selected. Each vector evaluation is associated
with running the algorithm on one or more test instances. Simplest way of choos-
ing parameter vectors is full factorial design: we choose a few characteristic values
for each parameter (for example quartiles of values ranges) and evaluate all possible
combinations of these values. If there are n parameters and number of characteris-
tic values is k for each parameter then number of evaluations is kn. Therefore, in
some cases full factorial experiment is too time consuming. Other sampling meth-
ods were proposed like Latin Hypercube Sampling and Taguchi Orthogonal Arrays
[10]. In the first method parameter ranges are divided into a given number of m in-
tervals. Afterwards m parameter vectors are randomly chosen with one constraint:
for a given parameter no pair of vectors can have values from the same interval. The
second method also enables to reduce vector number and is similar to full factorial
design. Randomly generated vectors should meet the following condition: for each
pair of parameters all combinations of parameters values are used the same number
of times. It enables to reduce number of sampled vectors compared to full factorial
design.

Simple sampling methods are often used as starting procedures to more complex
tuning algorithms. For example instead of using one sampling procedure a tuning
method can repeat it multiply and use previous sampling results to narrow parame-
ter search space to a more promising area. Examples of such methods are Empirical
Modelling of Genetic Algorithms [17] and CALIBRA [23].

Another approaches use models to estimate results for some parameter vectors
instead of time-consuming algorithm tests. After some tests a model can be con-
structed. Its construction base on algorithm results obtained from a sample of param-
eter vectors. Afterwards, results from other parameter vectors can be estimated. Prob-
ably the most popular is regression model [20]. Instead of using only this one-stage
procedure it is usually better to compose it with further actions. For example Coy et
al. [18] use model-based approach, which is followed by a local search procedure.
First, full factorial design over the whole parameter space is used to construct a lin-
ear regression model and to determine the path of steepest descent. Afterwards, this
path is followed by a local search procedure and new vectors are generated and tested
until the best solution stops changing. Sequential Parameter Optimization (SPO) [19]
is a multi-stage procedure which updates the model after each iteration. After initial
model construction the most promising vectors are tested and the results are used to
update the model. This process is repeated until a given, maximum number of tests
is reached. Unlike Coy’s method this procedure improves the model after each itera-
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tion.
Screening methods’ purpose is to determine the best parameter vector from a

given set by using as few tests as possible. They concentrate only on vectors that
are most promising based on tests conducted so far. For example racing technique
[21] bases on partial results obtained from tests conducted so far and at each step it
discards parameter vectors that are not optimal according to statistical tests. Another
approach (Iterative F-RACE) [24] repeats procedures of racing and model construc-
tion (multi-variate normal distribution) until a given number of tests is performed.

Finding parameter vectors that enable the algorithm to obtain high-quality re-
sults can be a difficult task. The objective function (algorithm results quality) in
multi-dimensional parameter space is non-linear and can have multiple local opti-
mums. In such situations approaches such as evolutionary algorithms (EA) or local
search metaheuristics can be a good choice. In meta-EA a population consists of pa-
rameter vectors and the goal is to find an individual with highest meta-fitness function
(solution quality of the tuned algorithm run with a given parameters set). Each eval-
uation in meta-EA is associated with running the tuned algorithm and therefore it
can be very time consuming. One of the most advanced meta evolutionary algorithm
is Relevance Estimation and Value Calibration of parameters (REVAC) [25]. It is a
specific type of meta-EA where the population approximates the probability density
function of the most promising areas of the parameter space. Furthermore, REVAC
has been extended with Racing and Sharpening techniques in order to deal with the
stochasticity of the utility values more effectively.

Parameters Iterated Local Search (ParamsILS) [30] is an example of local search
approach to parameter tuning. After initial random sampling the best vector is cho-
sen and a hill climbing procedure (first improvement) is applied to this vector un-
til no better vector is found. Neighbourhood of a given vector v consists of vectors
that differ from v only by one parameter value. After finding initial local optimum
ParamILS repeatedly performs perturbation (random changes of some parameters)
and hill climbing procedure. Perturbation enables to escape local optimum and to po-
tentially search other optima. FocusedILS is a variant of ParamsILS that additionally
uses racing when comparing parameter vectors.

5. Description of the proposed evolutionary algorithm

Proposed method for solving the Orienteering Problem is evolutionary algorithm with
embedded local search operators. Path representation is used in the EA - each gene
in a chromosome is equivalent to a path vertex. Path profit is treated as fitness value
but infeasible solutions (paths longer than Tmax) have zero fitness and are not allowed
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in the population. At first, an initial population of Psize random routes is created. Af-
terwards, evolutionary phase takes place - operators of selection, crossover, mutation
and disturb are applied repeatedly. Mutation, crossover and disturb operators can be
either random or greedy (local search embedded) and ratio between randomness and
greediness can be adjusted with parameters. Evolutionary phase terminates after a
fixed number Ng of generations, or earlier if there have been no improvements in the
last Cg generations. After the evolutionary phase all paths in the population undergo
final local improvement procedure. The best feasible path (with highest total profit)
obtained during algorithm run is EA final result. Three different crossover operators
and three different selection methods (overall nine different algorithm configurations)
were implemented and tested.

5.1 Initialization

The algorithm starts by generating an initial population of Psize routes. Each route
is encoded as a sequence of different vertices. Let s and e be the given starting and
ending points of the routes. Initialization process inserts new, random vertices into
the route (at its end but before e vertex) as long as its total cost does not exceed Tmax

constraint. Only non-included vertices that can be inserted without violating Tmax are
considered during selection. Construction of the route ends when no new vertex can
be inserted without exceeding Tmax. The result of the initialization process are Psize

random routes not exceeding a given limit Tmax.

5.2 Selection

Three different selection procedures were tested.

Unbiased tournament selection: This method was presented by Sokolov et al. [22].
Psize tournaments are applied and in each tournament two random individuals are se-
lected (tournament size is 2). The winners of each of Psize tournaments (individuals
with the highest fitness) form parents pool. To reduce selection noise the standard
procedure was modified: a random permutation p without fixed points is generated
and tournaments are formed by pairs (i, p(i)). Thanks to this modification every indi-
vidual takes part in exactly two tournaments. During crossover phase (after selection)
children replace parents and create new generation.

Fitness proportionate selection with stochastic universal sampling: During this
procedure Psize individuals are selected and form parents pool. Each selection is based
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on fitness values and the probability of selecting individual i (fitness f (i)) is f (i)
F

where F is total fitness of whole population. In order to reduce selection bias stan-
dard roulette wheel was replaced by stochastic universal sampling [5]. Instead of Psize

random samplings only one random value is used and individuals are selected from
evenly spaced intervals. During crossover phase (after selection) children replace par-
ents and create new generation.

Deterministic crowding: No parent selection is performed and selecting mech-
anism is applied after crossover procedures (survival selection). In deterministic
crowding [9] each offspring competes with one of its parents and the fitter indi-
vidual is chosen to next generation. To preserve population diversity competition is
performed between more similar child-parent pairs. To measure differences between
individuals edit distance is applied: it is computed by longest common subsequence
(LCS) algorithm. The distance formula for paths i and j is

d(i, j) = L(i)+L( j)−2 ·LCS(i, j) (8)

where L(i) is number of vertices in path i while LCS(i, j) is the length of longest
common subsequence of paths i and j. In order to speed up the algorithm initially size
of vertex sets intersection is used instead of LCS in distance formula. If calculations
suggests childA-parentB and childB-parentA competition pairs (instead of childA-
parentA and childB-parentB pairs) then additional check is performed using LCS.

5.3 Crossover

First Psize·pk
2 different pairs of parents are randomly selected from the population (pk -

crossover probability) and each pair undergoes crossover procedure. Three crossover
operators were tested:

2-point crossover: Crossover method applied by the author for the OP in [39]
for the first time. At the beginning an ordered set S of common vertices for both
parents is determined. Vertices order in the set is the same as in first parent. Next,
chromosome fragments between two successive vertices in S are exchanged and two
offspring are created. If any duplicates appear in offspring individuals outside of ex-
changed fragments they are immediately removed. There are two types of crossover:
random (classic) version chooses crossover points randomly while greedy version
maximizes fitness function of the fitter offspring. The ratio between greediness and
randomness is determined by parameter zk - it is equal to the probability of selecting
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greedy crossover operator. Therefore zk=0 means purely random crossover procedure
while zk=1 means purely greedy procedure. In fig. 1 there is an example of 2-point
crossover.

Injection crossover: This method was applied by Tasgetiren in his OP-solving ge-
netic algorithm [16]. A random insertion point is chosen in one parent and a random
fragment in the other parent. The chosen fragment is inserted into the first parent,
duplicates are removed from it and its size is reduced to previous size by cutting
some genes. In this way an offspring individual is created. Tasgetiren applied ran-
dom crossover method while in this paper greedy version of this operator was also
created: insertion point is chosen to maximize offspring fitness. Ratio between ran-
domness and greediness is determined by parameter zk in the same way as in 2-point
crossover.

Path relinking crossover: Path relinking method was used by Campos et al [35]
as procedure complementing GRASP algorithm. It was also applied in genetic algo-
rithm solving Orienteering Problem with Time Windows (OPTW) by Karbowska et
al. [37]. In this method one route is gradually transformed into the other by inserting
and removing vertices. The best intermediate route is chosen in greedy version
of crossover. In random crossover version randomly selected intermediate route
becomes an offspring. Ratio between randomness and greediness is determined by
parameter zk in the same way as in previous crossover operators.

One crossover method (2-point) creates two offspring individuals while remain-
ing methods create only one offspring. To compensate this difference injection and
path relinking crossover are doubled (performed two times on ordered parent pairs:
P1-P2 and P2-P1).

5.4 Mutation

First Psize · pm individuals are randomly selected from the population (pm - mutation
probability). Each of them undergoes mutation. First 2-opt procedure is performed
once - it tries to change two edges in the path to shorten the path as much as possi-
ble (without changing vertex set). Example of edge exchanges is illustrated in fig. 2.
From all such possible edge exchanges 2-opt chooses the option which shortens the
path most.

After 2-opt procedure one vertex insertion or one vertex deletion is carried out.
Probabilities of both insertion and deletion are the same (0.5). Both procedures have
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parent A:   1 - 3 - 9 - 7 - 4 - 5 - 12 - 11 - 14 - 16

parent B:   1 - 6 - 8 - 2 - 7 - 13 - 10 - 5 - 15 - 16

o spring 1:   1 - 6 - 8 - 2 - 7 - 4 - 5 - 12 - 11 - 14 - 16

o spring 2:   1 - 3 - 9 - 7 - 13 - 10 - 5 - 15 - 16

o spring 1:   1 - 3 - 9 - 7 - 13 - 10 - 5 - 12 - 11 - 14 - 16

o spring 2:   1 - 6 - 8 - 2 - 7 - 4 - 5 - 15 - 16

o spring 1:   1 - 3 - 9 - 7 - 4 - 5 - 15 - 16

o spring 2:   1 - 6 - 8 - 2 - 7 - 13 - 10 - 5 - 12 - 11 - 14 - 16

option I

option II

option III

parents

Fig. 1. Example of 2-point crossover. Given two parents which have four common points (in bold:
1, 7, 5, 16) there are three possible fragment exchanges between successive points. Option I shows
children created by fragments exchange between vertices 1 and 7, option II illustrates children created
by segments exchange between points 7 and 5 while in option III one can see offspring individuals made
by exchange of fragments between vertices 5 and 16. Random variant of crossover chooses random
option while greedy variant chooses the option with highest fitness value of the better child.
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.

Fig. 2. Example of 2-opt edge change. For a path (v1,v2, ...,vi,vi+1, ...,v j,v j+1, ...,vn) two edges
((vi,vi+1) and (v j,v j+1)) are replaced by two other edges ((vi,v j) and (vi+1,v j+1) - green) and this
exchange results in a path (v1,v2, ...,vi,v j,v j−1, ...,vi+1,v j+1, ...,vn).

two types: greedy (local search) and random. Greedy versions of insert and delete
methods chose most favourable vertices in terms of their profits and change of path
cost. During greedy insert all non-present vertices and all insertion points are consid-
ered and the option with highest ratio Pro f itIncrease

CostIncrease is chosen. Similarly local search
used in delete procedure removes the vertex which minimizes ratio Pro f itDecrease

CostDecrease . Ran-
dom versions choose randomly selected vertices for insertion/deletion. However, ran-
dom insert procedure adds new, random vertex in the insertion point which minimizes
route cost increase. The ratio between greediness and randomness is determined by
parameter zm in the same way as by parameter zk in crossover phase. Mutation exam-
ples are shown in fig. 3 and 4. Mutation operators do not allow paths to exceed Tmax

constraint. In order to speed up local search procedure (in insertion mutation) for a
given number of vertex pairs (i, j) ordered lists of vertices are stored - they are sorted
by Pro f itIncrease

CostIncrease heuristic associated with inserting a given vertex between vertices i
and j.

5.5 Disturb

Disturb procedure is a different type of mutation and causes bigger changes in routes.
First Psize · pz individuals are randomly selected from the population (pz - disturb
probability). Each of them undergoes disturb procedure which removes some route
fragment (but no more than 10 percent of route vertices). Again there are two types
of disturb procedure: greedy variant from all fragments of a given length chooses the
one which minimizes ratio Pro f itDecrease

CostDecrease while random variant chooses route segment
randomly. The ratio between greediness and randomness is determined by parameter
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Fig. 3. Example of inserting mutation. Given a graph with 7 vertices and a path (1, 5, 7, 4, 2) there are
two vertices not present in the path (3 and 6). Each of them can be inserted into one of 4 insertion points.
That gives a total of 8 insertion options. Greedy insertion chooses the option maximizing Pro f itIncrease

CostIncrease
ratio - inserting vertex 3 between vertices 7 and 4 gives the best ratio of 1.5 (profit increase is 3 and path
cost increase is 2). Random insertion chooses random vertex and inserts it into a place which minimizes
path cost increase (either vertex 3 between vertices 7 and 4 or vertex 6 between vertices 5 and 7. Graph
weights are given beside edges and profits beside vertices (in circles).
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Fig. 4. Example of deleting mutation. Given a path (1, 5, 7, 4, 2) there are three options of vertex deletion
(5, 7 or 4). Greedy deletion chooses the option minimizing Pro f itDecrease

CostDecrease ratio - removing vertex 5 gives
the best ratio of 1.0 (profit decrease is 3 and path cost reduction is 3). Random deletion chooses random
vertex from all candidates. Graph weights are given beside edges and profits beside vertices (in circles).
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zz. This procedure enables routes to escape from local optimum and gives a chance
to explore a different fragment of solution space.

5.6 Local improvement phase

After evolutionary phase is over each path undergoes final, local improvement proce-
dure. First a series of 2-opt procedures is performed on a given path. Afterwards one
greedy vertex deletion and a series of greedy vertex insertions are performed until
Tmax is reached (insertions and deletions described in mutation section). This process
is repeated until no improvement is found. This procedure also tries to improve the
best path found by the algorithm during evolutionary phase by performing a series
of greedy insertions until Tmax is reached. In practice, for fine-tuned EAs this phase
usually gives only small improvement.

6. Parameter tuning of EA

After choosing algorithm components parameter tuning was carried out. This process
was performed for each of 9 EA configurations (3 different selections x 3 different
crossovers).

6.1 Tuning methodology

Params Iterated Local Search (ParamsILS) [30] algorithm was used for parameter
tuning because of its simplicity and lower time consumption compared to meta-EAs.
This meta-algorithm searches multi-dimensional parameter space using local search
procedures. Parameter vectors (meta-solutions) processed by ParamsILS are eval-
uated by averaging results from multiple runs of the tuned EA. In the first phase
N vectors are randomly chosen and the best of meta-solutions is selected for hill-
climbing procedure. In this local improvement phase neighbourhood of the current
solution is searched in a random order and the current solution is updated if a better
neighbour is found. Hill-climbing procedure is performed as long as current solution
has any better neighbour. Afterwards disturb procedure occurs: random S parame-
ters of the best found meta-solution are changed (escaping from local optimum) and
hill-climbing is performed again. Procedures of disturb and hill-climbing are iterated
until a specific number of evaluations (or amount of time) is reached (during this
experiment time limit for tuning was set to 4 hours). In some iterations current solu-
tion is again randomly initialized (large jump in solution space) - the probability of
random restart is Prestart . Neighbourhood of parameter vector v is defined as all vec-
tors that differs from v only on one parameter. In this case parameter discretization is
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needed. In table 1 there are descriptions of all tuned parameters and their set of values
used during tuning procedure. Therefore meta-algorithm operates on 6-dimensional
parameter space. Disturb procedure of the tuned EA has additional, small values of
probability because it modifies large parts of routes and can be destructive to solu-
tions quality when overused. Some basic EA parameters were set to specific values
(table 2). Population size is a compromise between exploration ability and compu-
tation time. Parameters associated with generations number were determined during
earlier experiments and should not stop EA prematurely.

Table 1. Tuned parameters of EA

parameter description values set
pk crossover probability {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
pm mutation probability {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
pz disturb probability {0, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
zk crossover greediness/randomness ratio {0, 0.2, 0.4, 0.6, 0.8, 1}
zm mutation greediness/randomness ratio {0, 0.2, 0.4, 0.6, 0.8, 1}
zz disturb greediness/randomness ratio {0, 0.2, 0.4, 0.6, 0.8, 1}

Table 2. Set parameters of EA

parameter description value
Psize population size 100
Ng maximum number of generations 5000
Cg maximum number of generations without improvement 500

In order to better explore meta-solution space first phase of the algorithm was
modified. For each parameter p (with values range <pmin, pmax>) two subranges of
values were defined: lower subrange <pmin, pmin+pmax

2 ) and upper subrange < pmin+pmax
2 ,

pmax>. If number of parameters is n then parameter space can be divided into 2n parts.
Two vectors belong to the same part only if all of their parameters belong to the same
subrange. In the first part of the meta-algorithm 26 random vectors from different
parts of parameter space are selected. After initial selection meta-algorithm works in
the way described above. Parameters of tuner are presented in table 3.
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Table 3. Parameters of meta-algorithm

parameter description value
N number of initial random vectors 64
S number of parameters changed during disturb phase 2

Prestart probability of random restart of current solution 0.3

Table 4. All problem instances with Tmax values

Class Instance name Tmax Class Instance name Tmax

I

kroA100 10641

II

eil101A 158
kroB100 11071 cmt121A 137
kroC100 10375 cmt151A 175
kroD100 10647 cmt200A 191
kroE100 11034 gil262A 595

rd100 3955 eil101B 315
eil101 315 cmt121B 273
lin105 7190 cmt151B 350
pr107 22152 cmt200B 382
gr120 3471 gil262B 1189
pr124 29515 eil101C 472

bier127 59141 cmt121C 409
pr136 48386 cmt151C 525
gr137 34927 cmt200C 573
pr144 29269 gil262C 1784

kroA150 13262
kroB150 13065

pr152 36841
u159 21040

rat195 1162
d198 7890

kroA200 14684
kroB200 14719

ts225 63322
pr226 40185
gil262 1189
pr264 24568
pr299 24096
lin318 21015
rd400 7641
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6.2 Problem instances

All OP instances (divided into two classes) are presented in table 4. Class I tests
are Travelling Salesman Problem (TSP) instances adapted to OP by Fischetti et al.
[14]. They come from TSPLIB library (XML format of distance matrices) created by
Reinelt [6] and profits of vertices were generated by Fischetti according to pseudo-
random formula:

pi = 1+(7141 · i+73)(mod 100) (9)

where pi is profit of vertex i. Tmax values for class I instances were set as 50 percent
of shortest hamiltionian cycles. Distances between vertices were truncated to integer
numbers.

Class II tests were Vehicle Routing Problem (VRP) instances adapted to OP by
Fischetti et al [14]. Some of them (eil101, gil262) come from TSPLIB library while
other instances were created by Christofides et al. [2]. In these instances customer
demands from VRP were interpreted as vertices profits in the OP. Tmax values were
set as 25, 50 and 75 percent of shortest hamiltonian cycles. Depending on Tmax value
instances have additional letter (A, B or C) in their names. For each instance from
both classes number of vertices is encoded into its name. Distances between vertices
were rounded to nearest integers. For all instances of both classes paths start and end
in vertex 1.

6.3 Tuning results

All experiments (calibration and testing) were carried out on Intel i7 3.6 GHz pro-
cessor. Programs were implemented in C++ and executed in Linux operating system.
Calibration process was carried out on three problem instances: pr299 and rd400
(from class I) as well as gil262 (from class II). From all OP instances with known
exact solutions these three were hardest to obtain close to optimal solutions for pub-
lished methods and for evolutionary algorithm during earlier tests. Evaluation of a
given parameter vector consisted of 30 EA runs (10 runs for each of the calibration
networks) and the result was average gap to the optimal solution. The gap was calcu-
lated as 100 · (1− Palg

Popt
) where Palg is route profit obtained by EA while Popt is profit

of optimal route. Tuning process was performed for nine different EA configurations
(various types of selection and crossover).

In table 5 calibration results are presented for nine different EA configurations.
It can be seen that generally the hardest instance (in terms of obtained results) is
rd400 - large number of vertices (400) is one of reasons for biggest gaps among three
calibration networks. In terms of average gap the best results were obtained when
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Table 5. Calibration results for different EA configurations with best found sets of parameters and av-
erage gaps to optimal results (their 95 percent confidence intervals given beside them) for calibration
networks. Crossover types: 2P - two point crossover, INJ - injection crossover, PR - path relinking
crossover. Selection types: TUR - unbiased tournament selection, SUS - fitness proportionate selection
with stochastic universal sampling, CRO - deterministic crowding. The result of the best EA configura-
tion in bold.

Crossover Selection Calibrated parameters rd400 pr299 gil262C All 3 networks
pk pm pz zk zm zz gap (%) gap (%) gap (%) avg. gap (%)

2-P
TUR 0,6 1,0 0,70 0,4 0,6 0,4 3,47 3,32 1,14 2,64 ±0.50
SUS 0,6 1,0 0,10 0,8 0,8 0,6 2,37 1,42 0,81 1,53 ±0.38
CRO 1,0 1,0 0,10 0,6 0,8 1.0 0,63 0,91 0,38 0.64 ±0.12

INJ
TUR 0,8 1,0 0,50 0,6 0,6 0,6 4,84 2,40 1,53 2,92 ±0.56
SUS 0,6 1,0 0,00 0,8 0,8 - 3,20 2,37 0,74 2,10 ±0.54
CRO 1,0 1,0 0,00 0,4 0,6 - 5,96 2,34 2,54 3,61 ±0.32

PR
TUR 0,6 1,0 0,70 1,0 0,6 0,6 3,86 1,90 0,63 2,13 ±0.60
SUS 0,4 1,0 0,10 1,0 0,8 0,6 2,09 2,63 0,41 1,71 ±0.34
CRO 0,8 1,0 0,03 0,4 0,8 0,2 2,36 0,93 0,45 1,25 ±0.30

Table 6. Comparison of average gap (in percent) for rd400 instance (average from 30 runs) depending
on zk and zm greediness/randomness parameters (for crossover and mutation respectively). EA configu-
ration: 2-point crossover and deterministic crowding. Remaining parameters were the same as in table
5. 95 percent confidence intervals for average gap are given by ± sign. Average gaps after evolution
phase but before final local improvement phase are given in parentheses. The best parameter set in bold.

zk \ zm 0.0 0.2 0.4 0.6 0.8 1.0

0.0
11.07 8.06 4.51 2.11 2.28 2.49
±0.45 ±0.46 ±0.32 ±0.30 ±0.23 ±0.21
(29.40) (18.67) (7.81) (2.90) (2.79) (2.93)

0.2
8.44 5.04 2.54 0.79 1.10 1.03
±0.69 ±0.28 ±0.21 ±0.17 ±0.15 ±0.16
(13.64) (6.58) (2.77) (0.83) (1.13) (1.07)

0.4
6.97 4.23 2.34 0.79 0.76 0.89
±0.68 ±0.27 ±0.16 ±0.14 ±0.14 ±0.15
(8.97) (4.65) (2.42) (0.83) (0.78) (0.93)

0.6
6.59 3.79 2.31 1.01 0.69 0.91
±0.59 ±0.21 ±0.19 ±0.11 ±0.10 ±0.14
(7.33) (4.04) (2.34) (1.04) (0.71) (0.93)

0.8
6.14 3.83 2.38 1.19 0.79 0.84
±0.55 ±0.22 ±0.14 ±0.13 ±0.09 ±0.09
(6.42) (3.98) (2.42) (1.20) (0.80) (0.87)

1.0
6.19 3.89 2.62 1.42 0.96 1.00
±0.38 ±0.17 ±0.12 ±0.11 ±0.12 ±0.12
(6.36) (3.91) (2.66) (1.43) (0.97) (1.02)
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calibrating EA with two-point crossover type and deterministic crowding survival se-
lection type. Average gap is only 0.64 per cent and EA gives the best results for all
three calibration networks. One can see that algorithm configurations with two-point
crossover give the best average results regardless of selection type. Tuned EAs with
deterministic crowding selection give the best results in two (out of three) crossover
types. Crossover probabilities chosen by tuner were generally high or medium and
best configurations had very high crossover probability (0.8-1.0). Crossover greedi-
ness/randomness ratio is medium or high and its values for best configurations (0.4-
0.6) suggest importance of both elements (greediness and randomness) when creat-
ing offspring individuals. Mutation probability is very high (1.0) in all cases and its
greedy-random ratio is medium or high (similarly to crossover). These results show
importance of local search operations in mutation phase. It can be seen that disturb
probability varies strongly depending on selection type - it is high for tournament
selection and low for other selection types. It is associated with stronger tournament
selection pressure compared to other selection types - increasing disturb probability
counters selection effect and assures better diversity (and longer convergence) of the
population.

In table 6 there are results (rd400 test instance) for the best EA configuration
(2-point crossover and deterministic crowding) depending on zk and zm values. Re-
maining parameters were set by tuning procedure. It can be seen that solution quality
rises quickly as greediness of crossover and mutation grows. The difference between
purely random parameters configuration and the best configurations is about 10 per-
cent. One can see that gaps for randomness-favouring parameter sets are even bigger
without post-evolution local improvement phase. For more greedy parameter sets
final improvement phase brings little or no change to solutions quality. The best pa-
rameters values are about 0.6-0.8 for zm and 0.4-0.8 for zk. When greediness grows
to 1.0 (for both parameters) results quality drops gently. One can see that variance of
EA results (shown by length of confidence intervals) is dependent on zk and zm ratios
- more greedy configurations give steadier results. Confidence interval for gap in the
best parameter set is rather short but a few other parameter sets are not significantly
worse in terms of results. Local search methods are essential in this configuration but
random component also plays its role. Large advantage of greediness over random-
ness arises from selection mechanism - in deterministic crowding selection pressure
is lower and randomness-favouring parameter sets cannot converge to good solutions.
In this algorithm configuration local search operators are probably more responsible
for convergence than selection.
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Table 7. Experiment results for different, tuned EA configurations (average gaps and 95 percent con-
fidence intervals for them) for all test instances from both problem classes. Crossover types: 2P - two
point crossover, INJ - injection crossover, PR - path relinking crossover. Selection types: TUR - un-
biased tournament selection, SUS - fitness proportionate selection with stochastic universal sampling,
CRO - deterministic crowding. The results of the best EA configuration in bold.

Crossover Selection calibration class I class II
networks networks networks

avg. gap (%) avg. gap (%) avg. gap (%)

2-P
TUR 2.64 2.12 ±0.10 2.06 ±0.16
SUS 1.53 1.20 ±0.08 1.21 ±0.10
CRO 0.64 0.41 ±0.03 0.34 ±0.03

INJ
TUR 2.92 2.66 ±0.13 2.90 ±0.23
SUS 2.10 2.01 ±0.12 1.53 ±0.18
CRO 3,61 1.52 ±0.04 2.24 ±0.08

PR
TUR 2.13 2.06 ±0.13 1.71 ±0.11
SUS 1.71 1.51 ±0.10 1.30 ±0.12
CRO 1.25 1.55 ±0.09 1.43 ±0.12

6.4 Test instances results

For each problem instance EA was executed 30 times and average profit was com-
puted. In addition 95 percent confidence intervals for average gaps were presented. In
table 7 average results of tuned EA configurations for all instances from both classes
are displayed and compared to results from calibration phase. One can see that the
best algorithm configuration from tuning phase (2-point crossover and deterministic
crowding survival selection) achieves on average the best results on all test instances
as well - average gap is only 0.41 and 0.34 percent (for class I and class II respec-
tively). In most cases better results for calibration networks implied superiority for
all instances but exceptions also appeared (configuration injection crossover + deter-
ministic crowding behaves much better overall than for tuning networks). It can be
seen that in most cases overall average gaps for class I and class II are smaller than
average gaps for calibrated networks (despite fitting EAs to them). It results from
the fact that calibration was performed on larger instances (and probably the hardest
to obtain high-quality results) with 262-400 vertices while most test networks had
100-200 nodes.
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Table 8. Comparison of results of the best tuned EA configuration (2-point crossover + deterministic
crowding) with results of GRASP, GRASPwPR and best known solutions (class I). Execution time is
given in seconds. 95 percent confidence intervals for gaps are given beside gaps.

Instance EA GRASP GRASP PR Best solution
profit gap (%) time profit gap (%) profit gap (%)

kroA100 3177.8 0.10 ±0.05 1.3 3135 1.45 3181 0 3181
kroB100 3191 0.13 ±0.00 1.3 3183 0.38 3191 0.13 3195
kroC100 3025.7 0.60 ±0.32 1.5 3044 0 3044 0 3044
kroD100 3222.3 0.11 ±0.02 1.7 3152 2.29 3212 0.43 3226
kroE100 3303.9 0.18 ±0.17 1.2 3260 1.51 3310 0 3310

rd100 3448.7 0.61 ±0.07 1.1 3449 0.61 3453 0.49 3470
eil101 3667.4 0.02 ±0.03 1.1 3596 1.96 3645 0.63 3668
lin105 3576.7 0.01 ±0.01 1.4 3577 0 3577 0 3577
pr107 2681 0.00 ±0.00 0.8 2681 0 2681 0 2681
gr120 4198.5 0.58 ±0.13 1.4 4138 2.01 4201 0.52 4223
pr124 3840 0.00 ±0.00 1.8 3840 0 3840 0 3840

bier127 5374.7 0.02 ±0.03 4.1 5154 4.13 5254 2.27 5376
pr136 4214.2 0.21 ±0.04 1.7 4170 1.26 4213 0.24 4223
gr137 4272.1 0.44 ±0.03 1.7 4255 0.84 4284 0.16 4291
pr144 3911.5 2.07 ±0.57 2 3902 2.3 3994 0 3994

kroA150 4916.8 0.04 ±0.03 2.3 4768 3.07 4915 0.08 4919
kroB150 5014.5 0.05 ±0.09 2.1 4967 1 5001 0.32 5017

pr152 4192.4 0.09 ±0.05 1.9 4094 2.43 4175 0.5 4196
u159 5028.3 0.31 ±0.08 2.3 4809 4.66 4987 1.13 5044

rat195 5895.1 0.69 ±0.08 2.9 5693 4.09 5693 4.09 5936
d198 6507.9 0.48 ±0.07 3.3 6347 2.94 6476 0.96 6539

kroA200 6583.3 0.49 ±0.06 3.3 6447 2.55 6551 0.98 6616
kroB200 6581.6 0.23 ±0.08 3.5 6357 3.64 6409 2.85 6597

ts225 6732.1 1.17 ±0.32 4.2 6701 1.63 6784 0.41 6812
pr226 6685 0.09 ±0.10 6.5 6375 4.72 6614 1.15 6691
gil262 9135.8 0.25 ±0.05 5.6 8847 3.41 8941 2.38 9159
pr264 6666 0.00 ±0.00 3.8 6666 0 6666 0 6666
pr299 9010 1.07 ±0.14 6.3 8645 5.07 8689 4.59 9107
lin318 10795.6 1.52 ±0.12 8.4 10074 8.1 10339 5.68 10962
rd400 13461.3 0.69 ±0.10 16.2 12365 8.78 12365 8.78 13555
Avg. 5410.4 0.41 ±0.03 3.2 5256.4 2.49 5322.8 1.29 5437.2
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Table 9. Comparison of results of the best tuned EA configuration (2-point crossover + deterministic
crowding) with results of GRASP, GRASPwPR and best known solutions (class II). Execution time is
given in seconds. 95 percent confidence intervals are given beside gaps.

Instance EA GRASP GRASPwPR Best solution
profit gap (%) time profit gap (%) profit gap (%)

eil101A 571.9 0.02 ±0.02 0.7 566 1.05 572 0 572
cmt121A 408.9 0.75 ±0.27 0.7 412 0 412 0 412
cmt151A 824 0.00 ±0.00 0.8 815 1.09 824 0 824
cmt200A 1204.7 0.02 ±0.02 2 1145 4.98 1181 1.99 1205
gil262A 4492.9 0.38 ±0.20 2.4 3916 13.17 4050 10.2 4510
eil101B 1047.1 0.18 ±0.08 1.2 1024 2.38 1032 1.62 1049
cmt121B 712.7 0.32 ±0.17 1.5 699 2.24 707 1.12 715
cmt151B 1535.7 0.08 ±0.03 2.1 1482 3.58 1528 0.59 1537
cmt200B 2172.4 1.16 ±0.15 5.2 2073 5.69 2105 4.23 2198
gil262B 8420.6 0.42 ±0.09 5.7 7946 6.03 8074 4.52 8456
eil101C 1333.6 0.18 ±0.06 2.7 1295 3.07 1302 2.54 1336
cmt121C 1129.5 0.40 ±0.13 2.1 1120 1.23 1125 0.79 1134
cmt151C 1993.3 0.48 ±0.04 6 1965 1.9 1996 0.35 2003
cmt200C 2873.3 0.27 ±0.04 10.9 2791 3.12 2824 1.98 2881
gil262C 11153.6 0.37 ±0.02 13.3 10938 2.3 11046 1.33 11195

Avg. 2658.3 0.34 ±0.03 3.8 2545.8 3.46 2585.2 2.08 2668.5

Table 10. New, best solution found for gil262A.

instance profit route

gil262A 4510 1-164-225-83-158-250-63-238-178-70-191-124-119-4-216- 105-142-26-247
-209-181-6-4-217-47-188-162-180-129-49-197-175-144-99-241-118-93-179-211-

42-111-110-21-228-30-98-133-172-182-60-163-76-220-16-103-40-39-224-
44-226-242-12-215-132-58-204-102-115-149-27-10-154-231-171-3-126-65-1
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In table 8 there is a comparison (problem class I) between best tuned EA con-
figuration and other algorithms (GRASP, GRASPwPR) [35] as well as best known
results obtained by branch-and-cut exact algorithm (results in [35] but algorithm pro-
posed by [14]). EA with average gap of only 0.41 percent is almost 1 percent better
than GRASPwPR and over 2 percent better than GRASP. Confidence intervals for
average gap show that EA results are significantly better for most test instances. EA
advantage is very clear for larger instances (3-8 percent over GRASPwPR). In most
cases EA obtains close to optimal results in reasonably short execution time (less than
5 seconds in most cases). In table 9 there is a similar comparison for problem class
II. EA again clearly outperforms GRASP and GRASPwPR methods by 3.1 and 1.7
percent respectively (gaps are statistically significant) and its execution time is still
reasonably short. Results obtained by tuned EA are clearly better than other methods
and on average are very close to the best known solutions obtained by exact algo-
rithm. For one instance (gil262A) new, best solution (profit 4510) was obtained by
EA (presented in table 10) - previous best solution (profit 4466) was obtained by
branch-and-cut algorithm but for some networks its execution time limit (5 hours)
was reached and resulting solutions could be worse than optimal.

7. Conclusions and further research

In the paper parameter tuning of evolutionary algorithm solving the Orienteering
Problem was carried out. Nine different algorithm configurations (varying in selec-
tion and crossover phases) were tuned and tested. Parameters of EA were tuned with
ParamsILS local search algorithm. Results show the importance of both choosing
algorithm components and parameter calibration when developing EAs. Parameter
tuning done in an automatic way have advantages over adhoc calibration. For a given
algorithm configuration the described tuner was able to find a very good parame-
ters set in a few hours. Tuned EA achieved high-quality solutions and clearly out-
performed GRASP and GRASPwPR methods (reaching results close to optimal for
most test instances).

Further research is concentrated on other aspects of OP solving evolutionary
algorithms i.e. different types of paths initialization (local search methods), infeasi-
ble solutions in the population and combining a few crossover operators in one EA.
The author is also working on solutions for the Time-Dependent Orienteering Prob-
lem (TDOP) [38] particularly for trip planners in public transport networks. Methods
working well for the classic OP (EAs in particular) can probably be adapted success-
fully to time-dependent version of the problem.
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KALIBRACJA PARAMETRÓW ALGORYTMU
EWOLUCYJNEGO ROZWIĄZUJĄCEGO

ORIENTEERING PROBLEM

Streszczenie Różne klasy algorytmów rozwiązujących problemy optymalizacyjne posia-
dają zestawy parametrów. Ustawienie odpowiednich wartości parametrów może być równie
ważne, co dobór odpowiednich komponentów algorytmu. Kalibracja parametrów sama w
sobie może być skomplikowanym problemem optymalizacyjnym i wiele meta-algorytmów
zostało zaproponowanych by przeprowadzać ten proces automatycznie. Artykuł prezentuje
automatyczną kalibrację parametrów algorytmu ewolucyjnego rozwiązującego Orienteering
Problem. W tym celu wybrano metodę ParamsILS. Otrzymane rezultaty ukazują jak ważny
jest odpowiedni dobór parametrów: algorytm po kalibracji uzyskał bardzo wysokiej jakości
rozwiązania dla znanych sieci testowych.

Słowa kluczowe: kalibracja parametrów, algorytmy ewolucyjne, Orienteering Problem
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