PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Enhanced mitigation of nonlinearity signal distortion by hybrid optical compensation technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Udoskonalone łagodzenie zniekształceń sygnału nieliniowości dzięki hybrydowej technice kompensacji optycznej
Języki publikacji
EN
Abstrakty
EN
This work investigates and proposes a method for mitigating the negative effects of nonlinearities in the fiber with dense wave division multiplexing transmission systems by combining the optical phase conjugation (OPC) approach with a Raman amplifier. The OPC technique uses a polarization diversity loop configuration to suppress the original input signal. As a result, phase conjugated idlers can be generated across a wide frequency range without introducing any spectral inefficiencies due to wavelength shifts. Idle waves are created by mixing four waves in nonlinear fibers with pump waves that are out of band and orthogonally polarized. Finally, the OPC subsystem is put to use in transmission experiments spanning 800 km over dispersion managed fiber spans with lumped amplification by Improved Raman amplifiers to reduce the effects of fiber nonlinearity caused by mid-link spectrum inversion or multiple links. Simulated results of a 50 GHz channel spacing and a 1.792 Tbps made up of eight 224 Gbps polarization division multiplexed (PDM) sixteen ary quadrature amplitude modulation (DP-16QAM) subchannels reveals a Q-factor improvement of up to ~3 dB in mid OPC compared to ~3.37 dB in multiple OPC in the absence of a backward Raman amplifier. In addition, using the OPC would result in an approximate of 10-6 improvement in BER compared to the conventional method. Furthermore, the average enhancement in error vector magnitude (EVM) for the DWDM situation would be larger than 15% with the inclusion of hybrid OPC with backward Raman amplifier.
PL
Ta praca bada i proponuje metodę łagodzenia negatywnych skutków nieliniowości we włóknie za pomocą systemów transmisyjnych z multipleksowaniem z gęstym podziałem fali poprzez połączenie podejścia optycznej koniugacji fazy (OPC) ze wzmacniaczem Ramana. Technika OPC wykorzystuje konfigurację pętli różnorodności polaryzacji do tłumienia oryginalnego sygnału wejściowego. W rezultacie sprzężone fazowo koła pasowe mogą być generowane w szerokim zakresie częstotliwości bez wprowadzania jakichkolwiek nieefektywności widmowych z powodu przesunięć długości fali. Fale jałowe są tworzone przez zmieszanie czterech fal we włóknach nieliniowych z falami pompy, które są poza pasmem i spolaryzowane ortogonalnie. Wreszcie, podsystem OPC jest wykorzystywany w eksperymentach z transmisją na dystansie 800 km na światłowodach zarządzanych dyspersyjnie ze wzmocnieniem skupionym przez ulepszone wzmacniacze ramanowskie w celu zmniejszenia skutków nieliniowości światłowodów spowodowanej odwróceniem widma łącza środkowego lub wieloma łączami. Symulowane wyniki odstępu międzykanałowego 50 GHz i przepustowości 1,792 Tb/s składającej się z ośmiu 224 Gb/s zmultipleksowanych z podziałem polaryzacji (PDM) szesnastu podkanałów kwadraturowej modulacji amplitudy (DP-16QAM) ujawniają poprawę współczynnika Q do ~3 dB w średnim OPC w porównaniu do ~ 3,37 dB w wielu OPC przy braku wstecznego wzmacniacza Ramana. Ponadto użycie OPC spowodowałoby poprawę BER w przybliżeniu o 10-6 w porównaniu z metodą konwencjonalną. Co więcej, średnie zwiększenie wielkości wektora błędu (EVM) dla sytuacji DWDM byłoby większe niż 15% przy uwzględnieniu hybrydowego OPC z wstecznym wzmacniaczem ramanowskim.
Rocznik
Strony
231--236
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • University of Babylon, Iraq
  • College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
  • University of Babylon, Iraq
Bibliografia
  • [1] E. P. da Silva, F. Da Ros, and D. Zibar, "Performance of multi-channel DBP with long-haul frequency-referenced transmission," in 2016 Optical Fiber Communications Conference and Exhibition (OFC), 2016: IEEE, pp. 1-3.
  • [2] I. T. Lima, T. D. DeMenezes, V. S. Grigoryan, M. O'sullivan, and C. R. Menyuk, "Nonlinear compensation in optical communications systems with normal dispersion fibers using the nonlinear Fourier transform," Journal of Lightwave Technology, vol. 35, no. 23, pp. 5056-5068, 2017.
  • [3] X. Yi, X. Huang, J. Zhang, B. Xu, F. Li, and Z. Li, "Imbalanced digital back-propagation for nonlinear optical fiber transmissions," Journal of Lightwave Technology, vol. 39, no. 14, pp. 4622-4628, 2021.
  • [4] V. Jain and R. Bhatia, "Review on nonlinearity effect in radio over fiber system and its mitigation," Journal of Optical Communications, vol. 4, no. 15, pp. 1-9, 2021.
  • [5] E. P. da Silva and M. P. Yankov, "Adaptive Turbo Equalization for Nonlinearity Compensation in WDM Systems," Journal of Lightwave Technology, vol. 39, no. 22, pp. 7124-7134, 2021.
  • [6] X. Liang and S. Kumar, "Optical back propagation for compensating nonlinear impairments in fiber optic links with ROADMs," Optics express, vol. 24, no. 20, pp. 22682-22692, 2016.
  • [7] K. Venkatesan, A. Chandrasekar, and P. Ramesh, "Parametric Optimization and FWM Mitigations in 64-Channel DWDM System," in Futuristic Communication and Network Technologies: Select Proceedings of VICFCNT 2020, 2022: Springer, pp. 135-143.
  • [8] A. H. A. Kareem and I. A. Murdas, "Performance evaluation of fiber impairment mitigation for high capacity communication systems using optical compensation method," Results in Optics, vol. 11, p. 100399, 2023.
  • [9] K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, and I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photonics Technology Letters, vol. 18, no. 2, pp. 403-405, 2006.
  • [10] V. Bajaj, M. Chagnon, S. Wahls, and V. Aref, "Efficient training of volterra series-based pre-distortion filter using neural networks," in 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022: IEEE, pp. 1-3.
  • [11] R. Dar and P. J. Winzer, "On the limits of digital back-propagation in fully loaded WDM systems," IEEE Photonics Technology Letters, vol. 28, no. 11, pp. 1253-1256, 2016.
  • [12] E. Temprana et al., "Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity precompensation in EDFA-only SMF link," in ECOC 2016; 42nd European Conference on Optical Communication, 2016: VDE, pp. 1-3.
  • [13] A. H. A. Kareem and I. A. Murdas, "A Comprehensive Survey of Fiber Impairment Mitigation Technologies in High Capacity Systems," in 2022 Muthanna International Conference on Engineering Science and Technology (MICEST), 2022: IEEE, pp. 65-70.
  • [14] I. Sackey et al., "Waveband-shift-free optical phase conjugator for spectrally efficient fiber nonlinearity mitigation," Journal of Lightwave Technology, vol. 36, no. 6, pp. 1309-1317, 2018.
  • [15] S. Rahbarfam and S. Kumar, "Nonlinear phase noise reduction using digital back propagation and midpoint optical phase conjugation," Optics Express, vol. 27, no. 6, pp. 8968-8982, 2019.
  • [16] A. Sobhanan, M. Pelusi, T. Inoue, D. Venkitesh, and S. Namiki, "Compensation of SOA nonlinear distortions by midstage optical phase conjugation," in 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020: IEEE, pp. 1-3.
  • [17] B. N. Due, N. Van Dien, H. N. Tan, and Q. Nguyen-The, "Nonlinearity compensation in DWDM metro systems using optical phase conjugation," in 2019 International Conference on Advanced Technologies for Communications (ATC), 2019: IEEE, pp. 193-197.
  • [18] L. N. Venkatasubramani, A. Sobhanan, A. Vijay, R. D. Koilpillai, and D. Venkitesh, "Optical phase conjugation using nonlinear SOA for nonlinearity and dispersion compensation of coherent multi-carrier lightwave systems," IEEE Access, vol. 9, pp. 44059-44068, 2021.
  • [19] A. H. A. Kareem and I. A. Murdas, "Investigation of Fiber Impairment Mitigation Based on Optical Phase Conjugation Technique," International Journal of Microwave and Optical Technology, vol. 18, no. 2, pp. 184-194, March 2023.
  • [20] M. A. Al-Khateeb, M. E. McCarthy, and A. D. Ellis, "Performance enhancement prediction for optical phase Conjugation in Systems with 100km Amplifier Spacing," in 2017 European Conference on Optical Communication (ECOC), 2017: IEEE, pp. 1-3.
  • [21] M. Tan et al., "Distributed Raman amplification for fiber nonlinearity compensation in a mid-link optical phase conjugation system," Sensors, vol. 22, no. 3, p. 758, 2022.
  • [22] K. Solis-Trapala, T. Inoue, and S. Namiki, "Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system," in 2014 The European Conference on Optical Communication (ECOC), 2014: IEEE, pp. 1-3.
  • [23] A. D. Ellis et al., "4 Tb/s transmission reach enhancement using 10× 400 Gb/s super-channels and polarization insensitive dual band optical phase conjugation," Journal of lightwave technology, vol. 34, no. 8, pp. 1717-1723, 2016.
  • [24] M. McCarthy, M. Al Kahteeb, F. Ferreira, and A. Ellis, "PMD tolerant nonlinear compensation using in-line phase conjugation," Optics Express, vol. 24, no. 4, pp. 3385-3392, 2016.
  • [25] A. Ellis, M. McCarthy, M. Al-Khateeb, and S. Sygletos, "Capacity limits of systems employing multiple optical phase conjugators," Optics express, vol. 23, no. 16, pp. 20381-20393, 2015.
  • [26] A. Ellis, M. McCarthy, M. Al Khateeb, M. Sorokina, and N. Doran, "Performance limits in optical communications due to fiber nonlinearity," Advances in Optics and Photonics, vol. 9, no. 3, pp. 429-503, 2017.
  • [27] M. A. Al-Khateeb et al., "Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation," Optics express, vol. 26, no. 3, pp. 3145-3160, 2018.
  • [28] A. H. Abdul Kareem and I. A. Murdas, "Improvement and Mitigation of Kerr Effects on Multichannel Communication Systems Using Efficient Optical Method," Journal of University of Babylon for Engineering Sciences, vol. 31, no. 02, pp. 72 - 91, 2023.
  • [29] G. P. Agrawal, Fiber optic communication systems. John Wiley & Sons, 2012.
  • [30] M. H. Shoreh, "Compensation of nonlinearity impairments in coherent optical OFDM systems using multiple optical phase conjugate modules," Journal of Optical Communications and Networking, vol. 6, no. 6, pp. 549-558, 2014.
  • [31] G. P. Agrawal, "Nonlinear fiber optics," Springer, 6ed, 2019.
  • [32] A. H. A. Kareem and I. A. Murdas, "All Optical UWB-DWDM for Medical Applications Based on Optical Phase Conjugation Technique," Journal of Global Pharma Technology, vol. 9, no. 9, pp. 128-137, 2017.
  • [33] J. Wang, Y. Du, C. Liang, Z. Li, and J. Fang, "Performance Evaluation of Highly Nonlinear Fiber (HNLF) Based Optical Phase Conjugation (OPC) in Long Haul Transmission of 640 Gbps 16-QAM CO-OFDM," in Photonics, 2021, vol. 8, no. 2: MDPI, p. 45.
  • [34] T. Xu et al., "Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect," Scientific reports, vol. 7, no. 1, p. 12986, 2017.
  • [35] M. Ajmani, P. Singh, and P. Kaur, "Hybrid dispersion compensating modules: a better solution for mitigating four-wave mixing effects," Wireless Personal Communications, vol. 107, no. 3, pp. 959-971, 2019.
  • [36] M. Berbineau et al., "All-Optical Nonlinear Pre-Compensation of Long-Reach Unrepeatered Systems," in 2021 IEEE 93rd Vehicular Technology Conference, 2022: IEEE.
  • [37] W. Cao, "Improved compensation of intrachannel four-wave mixing in dispersion-managed transmission links with mid-span optical phase conjugation," Optics Communications, vol. 530, p. 129185, 2023.
  • [38] F. Sun, F. Wen, B. Wu, Y. Ling, and K. Qiu, "Optical phase conjugation conversion through a nonlinear bidirectional semiconductor optical amplifier configuration," in Photonics, 2022, vol. 9, no. 3: MDPI, p. 164.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74ef26d2-2c0e-4762-8d08-5f7dc97cc532
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.