PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dosimetric impact of FFF over FF beam using VMAT for brain neoplasms treated with radiotherapy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: This study was conducted to assess the dosimetric impact of FFF beam plans on high-grade brain neoplasms using the VMAT technique when compared with FF beam plans. Material and Methods: Thirty patients with high-grade brain neoplasms, who had received radiotherapy using VMAT technique retrospectively were selected for this study. All the patients were planned for VMAT using 6MV_FF beam and the same plan was re-optimized using 6MV_FFF beam keeping the same dose constraint. Radiotherapy dose distribution on planning target volume (PTV) and organs at risk (OAR), target conformity index (CI), Homogeneity Index (HI), Low dose volume in the patient (V5, V10, V20, and V30), and Integral dose to the whole body in both plans were compared. Results: The PTV coverage and OAR’s showed no significant differences in dose distribution between the FFF and FF beam VMAT planning. There was a reduction of the average maximum dose in the right eye, left eye, right optic nerve, and left optic nerve using FFF beams. The reduction in average low dose volume was observed in V5, V10, V20, V30, and Mean Dose. Also, a significant reduction was observed in the integral dose to the whole body using the FFF beam. Conclusions: Using FFF beams with VMAT is doable for the treatment of high-grade brain neoplasms, and the delivery mode of the FFF beam in VMAT may yield similar results to FF beam which should be confirmed in a large scale prospective clinical trial.
Słowa kluczowe
Rocznik
Strony
191--199
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
  • Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
autor
  • Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
  • Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
  • Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
Bibliografia
  • 1. Fazekas JT. Treatment of grades I and II brain astrocytomas. the role of radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 1977;2(7-8):661-666. https://doi.org/10.1016/0360-3016(77)90045-1
  • 2. Stupp R, Weller M, Belanger K, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. The New England Journal of Medicine. 2005;352(10):987-96. https://doi.org/10.1056/NEJMoa043330
  • 3. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet. 2018;391(10125):1023-1075. https://doi.org/10.1016/S0140-6736(17)33326-3
  • 4. Wagner D, Christiansen H, Wolff H, Vorwerk H. Radiotherapy of malignant gliomas: Comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiotherapy and Oncology. 2009;93(3):593-596. https://doi.org/10.1016/j.radonc.2009.10.002
  • 5. Hrbacek J, Lang S, Klöck S. Commissioning of Photon Beams of a Flattening Filter-Free Linear Accelerator and the Accuracy of Beam Modeling Using an Anisotropic Analytical Algorithm. International Journal of Radiation Oncology, Biology, Physics. 2011;80(4):1228-1237. https://doi.org/10.1016/j.ijrobp.2010.09.050
  • 6. Georg D, Knöös T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011; 38 (3):15. https://doi.org/10.1118/1.3554643
  • 7. Kry SF, Vassiliev ON, Mohan R. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol. 2010;55(8):2155-2166. https://doi.org/10.1088/0031-9155/55/8/003
  • 8. Gasic D, Ohlhues L, Brodin NP, et al. A treatment planning and delivery comparison of volumetric modulated arc therapy with or without flattening filter for gliomas, brain metastases, prostate, head/neck and early stage lung cancer. Acta Oncologica. 2014;53(8):1005-1011. https://doi.org/10.3109/0284186X.2014.925578
  • 9. Baic B, Kozłowska B, Kwiatkowski R, Dybek M. Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams. Nukleonika. 2019;64(3):77-86. https://doi.org/10.2478/nuka-2019-0010
  • 10. Spruijt KH, Dahele M, Cuijpers JP, et al. Flattening Filter Free vs Flattened Beams for Breast Irradiation. International Journal of Radiation Oncology, Biology, Physics. 2013;85(2):506-513. https://doi.org/10.1016/j.ijrobp.2012.03.040
  • 11. Treutwein M, Hipp M, Koelbl O, Dobler B. Volumetric‐modulated arc therapy and intensity‐modulated radiation therapy treatment planning for prostate cancer with flattened beam and flattening filter free linear accelerators. J Appl Clin Med Phys. 2017;18(5):307-314. https://doi.org/10.1002/acm2.12168
  • 12. Tamilarasu S, Saminathan M, Sharma S, Pahuja A, Dewan A. Comparative Evaluation of a 6MV Flattened Beam and a Flattening Filter Free Beam for Carcinoma of Cervix – IMRT Planning Study. Asian Pac J Cancer Prev. 2018;19(3). https://doi.org/10.22034/APJCP.2018.19.3.639
  • 13. ICRU Report 50: Prescribing, Recording and Reporting Photon Beam Therapy; International Commission on Radiation Units and Measurements (ICRU). Journal of the ICRU. 1993;os-26(1). https://doi.org/10.1093/jicru_os26.1.iii
  • 14. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50); International Commission on Radiation Units and Measurements (ICRU). Journal of the ICRU. 1999;os-32(1). https://doi.org/10.1093/jicru_os32.1.iii
  • 15. Niyazi M, Brada M, Chalmers AJ, et al. ESTRO-ACROP guideline “target delineation of glioblastomas.” Radiotherapy and Oncology. 2016;118(1):35-42. https://doi.org/10.1016/j.radonc.2015.12.003
  • 16. London Cancer Brain and Spine Pathway Board Neuro-oncology Guidelines, May 2014 (http://www.londoncancer.org/media/84343/london-cancer-neuro-oncology-radiotherapy-guidelines-2013-final-v1-0.pdf)
  • 17. Eekers DB, in ’t Ven L, Roelofs E, et al. The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology. Radiotherapy and Oncology. 2018;128(1):37-43. https://doi.org/10.1016/j.radonc.2017.12.013
  • 18. Xiao Y, Kry SF, Popple R, et al. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. Journal of Applied Clinical Medical Physics. 2015;16(3):12-29. https://doi.org/10.1120/jacmp.v16i3.5219
  • 19. Meshram MN, Pramanik S, Ranjith CP, Gopal SK, Dobhal R. Dosimetric properties of equivalent-quality flattening filter-free (FFF) and flattened photon beams of Versa HD linear accelerator. Journal of Applied Clinical Medical Physics. 2016;17(3):358-370. https://doi.org/10.1120/jacmp.v17i3.6173
  • 20. ICRU Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT); International Commission on Radiation Units and Measurements (ICRU). Journal of the ICRU. 2010;10(1). https://doi.org/10.1093/jicru_ndq001
  • 21. Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. International Journal of Radiation Oncology, Biology, Physics. 2003;56(2):573-585. https://doi.org/10.1016/S0360-3016(02)04617-5
  • 22. Riet A van’t, Mak ACA, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. International Journal of Radiation Oncology, Biology, Physics. 1997;37(3):731-736. https://doi.org/10.1016/S0360-3016(96)00601-3
  • 23. Aoyama H, Westerly DC, Mackie TR, et al. Integral radiation dose to normal structures with conformal external beam radiation. International Journal of Radiation Oncology, Biology, Physics. 2006;64(3):962-967. https://doi.org/10.1016/j.ijrobp.2005.11.005
  • 24. Sun W, Chen L, Yang X, Wang B, Deng X, Huang X. Comparison of treatment plan quality of VMAT for esophageal carcinoma with: flattening filter beam versus flattening filter free beam. J Cancer. 2018;9(18):3263-3268. https://doi.org/10.7150/jca.26044
  • 25. Reggiori G, Mancosu P, Castiglioni S, et al. Can volumetric modulated arc therapy with flattening filter free beams play a role in stereotactic body radiotherapy for liver lesions? A volume-based analysis: SBRT with FFF VMAT for liver metastasis. Med Phys. 2012;39(2):1112-1118. https://doi.org/10.1118/1.3679858
  • 26. Lang S, Shrestha B, Graydon S, et al. Clinical application of flattening filter free beams for extracranial stereotactic radiotherapy. Radiotherapy and Oncology. 2013;106(2):255-259. https://doi.org/10.1016/j.radonc.2012.12.012
  • 27. Dang TM, Peters MJ, Hickey B, Semciw A. Efficacy of flattening-filter-free beam in stereotactic body radiation therapy planning and treatment: A systematic review with meta-analysis. J Med Imaging Radiat Oncol. 2017;61(3):379-387. https://doi.org/10.1111/1754-9485.12583
  • 28. Jia F, Xu D, Yue H, Wu H, Li G. Comparison of Flattening Filter and Flattening Filter-Free Volumetric Modulated Arc Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. Med Sci Monit. 2018;24:8500-8505. https://doi.org/10.12659/MSM.910218
  • 29. Ong CL, Dahele M, Cuijpers JP, Senan S, Slotman BJ, Verbakel WFAR. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams. International Journal of Radiation Oncology, Biology, Physics. 2013;86(3):420-425. https://doi.org/10.1016/j.ijrobp.2012.12.028
  • 30. Kragl G, af Wetterstedt S, Knäusl B, et al. Dosimetric characteristics of 6 and 10MV unflattened photon beams. Radiotherapy and Oncology. 2009;93(1):141-146. https://doi.org/10.1016/j.radonc.2009.06.008
  • 31. Titt U, Vassiliev ON, Pönisch F, Dong L, Liu H, Mohan R. A flattening filter free photon treatment concept evaluation with Monte Carlo: FFF Monte Carlo simulation. Med Phys. 2006;33(6Part1):1595-1602. https://doi.org/10.1118/1.2198327
  • 32. Lechner W, Kragl G, Georg D. Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts. Radiotherapy and Oncology. 2013;109(3):437-441. https://doi.org/10.1016/j.radonc.2013.09.020
  • 33. Vassiliev ON, Titt U, Pönisch F, Kry SF, Mohan R, Gillin MT. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006;51(7):1907-1917. https://doi.org/10.1088/0031-9155/51/7/019
  • 34. Sun W, Chen L, Yang X, Wang B, Deng X, Huang X. Comparison of treatment plan quality of VMAT for esophageal carcinoma with: flattening filter beam versus flattening filter free beam. J Cancer. 2018;9(18):3263-3268. https://doi.org/10.7150/jca.26044
  • 35. Ong CL, Dahele M, Cuijpers JP, Senan S, Slotman BJ, Verbakel WFAR. Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy Using Flattened and Flattening Filter-Free Beams. International Journal of Radiation Oncology, Biology, Physics. 2013;86(3):420-425. https://doi.org/10.1016/j.ijrobp.2012.12.028
  • 36. Sørensen BS, Vestergaard A, Overgaard J, Præstegaard LH. Dependence of cell survival on instantaneous dose rate of a linear accelerator. Radiotherapy and Oncology. 2011;101(1):223-225. https://doi.org/10.1016/j.radonc.2011.06.018
  • 37. Nakano H, Minami K, Yagi M, et al. Radiobiological effects of flattening filter–free photon beams on A549 non-small-cell lung cancer cells. Journal of Radiation Research. 2018;59(4):442-445. https://doi.org/10.1093/jrr/rry041
  • 38. King RB, Hyland WB, Cole AJ, et al. An in vitro study of the radiobiological effects of flattening filter free radiotherapy treatments. Phys Med Biol. 2013;58(5):N83-N94. https://doi.org/10.1088/0031-9155/58/5/N83
  • 39. Lohse I, Lang S, Hrbacek J, et al. Effect of high dose per pulse flattening filter-free beams on cancer cell survival. Radiotherapy and Oncology. 2011;101(1):226-232. https://doi.org/10.1016/j.radonc.2011.05.072
  • 40. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245):245ra93-245ra93. https://doi.org/10.1126/scitranslmed.3008973
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74ef0305-ae3c-403c-b7f9-c069b047b184
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.