PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Branch Death on Leaf Nutrient Status and Stoichiometry of Wild Apple Trees (Malus sieversii) in the Western Tianshan Mountains, China

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wild apple tree Malus sieversii is a tertiary relict species and a key ancestor of the commonly cultivated apple trees today. In recent years, many M. sieversii individuals have died or have severe dead branches. Whether branch death would lead to the change in nutrient stoichiometry of M. sieversii remains unclear. In this study, the nitrogen (N), phosphorous (P), and potassium (K) stoichiometric traits of M. sieversii individual trees with different proportion of dead branches divided into three classes (Class I [< 20%], Class II [40-60%], and Class III [> 80%]) during annual growth period, elemental scaling relations, and the possible influencing factors were systematically analysed. Leaf N, P, and K decreased during growing season, and N and P did not show significant differences among the three classes; however, the Class III wild apple trees had the lowest K contents in both photosynthetic and reproductive organs. Flowers had higher P and K contents than leaves, whereas fruits had low N content. The growth of M. sieversii was always limited by N due to low N:P ratio and N resorption efficiency. The scaling exponents of leaf N-P, N-K, or P-K among the three classes did not show any significant differences, revealing an inherent property of M. sieversii. Most soil variables showed weak correlations with leaf nutrient parameters (except for K). Precipitation and relative humidity, rather than temperature, showed significantly positive effects on leaf nutrients. These findings suggest that increasing water input and plant K content may be conducive to enhance the resistance and recovery ability of diseased wild apple trees.
Rocznik
Strony
296--312
Opis fizyczny
Bibliogr. 59 poz., fot., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, Xinjiang, China
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, Xinjiang, China
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, Xinjiang, China
autor
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, Xinjiang, China
autor
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, Xinjiang, China
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, Xinjiang, China
Bibliografia
  • 1. Aerts R. 1996 – Nutrient resorption from senescing leaves of perennials: Are there general patterns? – J. Ecol. 84: 597-608.
  • 2. Bao S. D. 2000 – Agriculture Soil Chemical Analysis (3rd edn) – Beijing: Science Press, China, pp. 25-144 (in Chinese).
  • 3. Chatzissavvidis C. A, Therios I. N, Molassiotis N. 2005 – Seasonal variation of nutritional status of olive plants affected by boron concentration in nutrient solution – Plant Nutr. 28: 309-321.
  • 4. Cornelissen J. H. C., Cornwell W. E., Austin A. 2014 – The tree of life in ecosystems: Evolution of plant effects on carbon and nutrient cycling – J. Ecol. 102: 269-274.
  • 5. Cornille A., Giraud T., Smulders M. J. M. et al. 2014 – The domestication and evolutionary ecology of apples – Trends Genet. 30: 57-65.
  • 6. Cui Z. J., Zhang Y. L., Zhang X., Luo Z. H., Lu Z. Z. 2019 – Life history and mortality factors of Agrilus mali Matsumura (Coleoptera: Buprestidae) in wild apples in Northwestern China – Agr. Forest Entomol. 21: 309-317.
  • 7. Drenovsky R. E., Pietrasiak N., Short T. H. et al. 2019 – Global temporal patterns in plant nutrient resorption plasticity – Global Ecol. Biogeogr. 28: 728-743.
  • 8. Duan N., Yang B., Chen X. S. et al. 2017 – Genome re–sequencing reveals the history of apple and supports a two-stage model for fruit enlargement – Nat. Commun. 8: 249.
  • 9. Duan Y. X., Fang H. 2017 – Plant Disease and Pest Control – Beijing: China Agriculture Press, pp. 30-45 (in Chinese).
  • 10. Elser J. J., Bracken M. E. S., Cleland E. E. et al. 2007 – Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems – Ecol. Lett. 10: 1135-1142.
  • 11. Elser J. J., Sterner R. W., Gorokhova E. et al. 2000 – Biological stoichiometry from genes to ecosystems – Ecol. Lett. 3: 540-550.
  • 12. Han W. X., Fang J. Y., Guo D. L., Zhang Y. 2005 – Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China – New Phytol. 168: 377-385.
  • 13. He C., Zhang J., Meng P., Gao J. 2019 – Seasonal dynamics of foliar δ(13) and nutrient concentration of Chinese chastetree and spine jujube in foothill rock outcrop habitat of the southern Taihang mountains, central China – J. For. Res. 30: 45-56.
  • 14. He H. L., Yang X. C., Li D. D. et al. 2017 – Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau – Chin. J. Plant Ecol. 41:126-135 (in Chinese, English summary).
  • 15. He J. S., Wang L., Flynn D. F. B. et al. 2008 – Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes – Oecologia, 155: 301-310.
  • 16. Imaran M., Gurmani Z. A. 2011 – Role of macro and micro nutrients in the plant growth and development – Sci. Tech. Dev. 30: 36-40.
  • 17. Killingbeck K. T. 1996 – Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency – Ecology, 77: 1716-1727.
  • 18. Koerselman W., Meuleman A. 1996 – The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation – J. Appl. Ecol. 33: 1441-1450.
  • 19. Li L. P., Hai Y., Anwar M. et al. 2011 – Community structure and conservation of wild fruit forests in the Ili Valley, Xinjiang – Arid Zone Res. 28: 60-66 (in Chinese, English summary).
  • 20. Li X. Y., Zhang H. X. 2018 – Effect of death individual on the genetic diversity of Malus sieversii population – Arid Zone Res. 35: 165-170 (in Chinese, English summary).
  • 21. Liu J. Q., Wang X. Y., Guo Y. et al. 2015 – Seasonal dynamics and resorption efficiencies of foliar nutrients in three dominant woody plants that grow at the treeline on Changbai Mountain – Acta Ecol. Sin. 35: 165-171 (in Chinese, English summary).
  • 22. Liu X. Y., He P., Jin J. Y. 2006 – Advances in effect of potassium nutrition on plant disease resistance and its mechanism – Plant Nutr. Fert. Sci. 12: 445-450 (in Chinese, English summary).
  • 23. Lu J. Y., Duan B. H., Yang M. et al. 2018 – Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors – Acta Pratacult. Sin. 27: 178-188 (in Chinese, English summary).
  • 24. Mcgroddy M. E., Daufresne T., Hedin L. O. 2008 – Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios – Ecology, 85: 2390-2401.
  • 25. Mei C., Yan P., Mamat A. et al. 2016 – The relationship between bark thickness and diameter class on Agrilus mali damage in Xinjiang wild apple – J. Agr. Sci. Tech. 18: 24-30 (in Chinese, English summary).
  • 26. Munson R. D., Huber D. M., Arny D. C. 1985 – [Interactions of Potassium with Plant Sisease] (In: [Potassium in Agriculture Muns] Ed: Munson R. D.) – ASA-CSSASSSA, Madison, WI, USA.
  • 27. Niklas K. 2006 – Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates – Ann. Bot. 97: 155-163.
  • 28. Niu D. C., Li Q., Jiang S. G. et al. 2013 – Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China's Alxa Plateau – Chin. J. Plant Ecol. 37: 317-325 (in Chinese, English summary).
  • 29. Panyushkina I., Mukhamadiev N., Lynch A. et al. 2017 – Wild apple growth and climate change in southeast Kazakhstan – Forests, 8: 406.
  • 30. Reich P. B., Oleksyn J., Wright I. J. et al. 2010 – Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes – P. Roy. Soc. B-Biol. Sci. 277: 877-883.
  • 31. Reich P. B., Oleksyn J. 2004 – Global patterns of plant leaf N and P in relation to temperature and latitude – Proc. Nat. Acad. Sci. 101: 11001-11006.
  • 32. Ren S. J., Yu G. R., Tao B. et al. 2007 – Leaf Nitrogen and Phosphorus Stoichiometry Across 654 Terrestrial Plant Species in NSTEC – Environ. Sci. 28: 2665-2683 (in Chinese, English summary).
  • 33. Richards C. M., Volk G. M., Reilley A. A. et al. 2009 – Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple – Tree Genet. Genomes, 5: 339-347.
  • 34. Sangwan A., Rattanpal H. N., Dalal R. 2008 – Effect of foliar application of potassium on fruit yield and quality of kinnow mandarin – Environ. Ecol. 26: 2315-2318.
  • 35. Sardans J., Rivas-Ubach A., Peñuelas J. 2012 – The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives – Plant Ecol. Evol. Syst. 14: 33-47.
  • 36. Schlesinger N. W. H. 1981 – Phenology, productivity, and nutrient accumulation in the post-fire chaparral shrub Lotus scoparius – Oecologia, 50: 217-224.
  • 37. Simões M. P., Madeira M., Gazarini L. 2008 – The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of mediterranean shrubs in the context of global climate changes – Flora, 203: 0-589.
  • 38. Spengler R. N. 2019 – Origins of the apple: The role of megafaunal mutualism in the domestication of Malus and Rosaceous trees – Front. Plant Sci. 10: 617.
  • 39. Sterner R. W., Elser J. J. 2002 – Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere – Princeton University Press, Princeton.
  • 40. Sun L. W., Chen J. W., Deng Q. 2019 – Research progress of terrestrial plants N/P ecological stoichiometry under global change – J. Trop. Subtrop. Bot. 27: 534-540 (in Chinese, English summary).
  • 41. Sun Y. X., Zhang J., Zhou X. B. et al. 2020 – Characteristics of stem hydraulic architecture of Malus sieversii in degraded wild fruit forest in Ili valley, China – Chin. J Appl. Ecol. 31: 3340-3348 (in Chinese, English summary).
  • 42. Tao Y., Wu G., Zhang Y., Zhou X. 2016 – Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China – J. Arid Land. 8: 935-947 (in Chinese, English summary).
  • 43. Teklay T. 2004 – Seasonal dynamics in the concentrations of macronutrients and organic constituents in green and senesced leaves of three agroforestry species in southern Ethiopia – Plant Soil, 267: 297-307.
  • 44. Tian D., Yan Z., Fang J. 2018b – Plant stoichiometry: A research frontier in ecology – Chin. J. Nat. 40: 235-242 (in Chinese, English summary).
  • 45. Tian D., Yan Z., Ma S. et al. 2019 – Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants – Sci. Chin. Life Sci. 62: 1047-1057.
  • 46. Tian D., Yan Z., Niklas K. J. et al. 2018a – Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent – Nat. Sci. Rev. 5: 728-739.
  • 47. Vergutz L., Manzoni S., Porporato A. et al. 2012 – Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants – Ecol. Monogr. 82: 205-220.
  • 48. Wang N., Jiang S., Zhang Z. et al. 2018 – Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples – Hortic. Res. 5: 70 (in Chinese, English summary).
  • 49. Wang Z., Lu J., Yang M. et al. 2015 – Stoichiometric characteristics of carbon, nitrogen, and phosphorus in leaves of differently aged Lucerne (Medicagosativa) stands – Front. Plant Sci. 6: 1062.
  • 50. Yan G. R., Xu Z. 2010 – Study on the Wild Fruit Trees in Xinjiang, China – Beijing: China Forestry Press (in Chinese).
  • 51. Yan Z., Kin N., Han W. et al. 2015 – Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana – Plant Soil, 388: 147-155.
  • 52. Yan Z., Tian D., Han W. et al. 2017 – An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants – Ann. Bot. 120: 937-942.
  • 53. Yu S. S., Zhao W. X., Yao Y. X. et al. 2019 – Relationships among deadwood symptom grades, salicylic acid content and DBH of Malus sieversii – Forest Res. 32: 111-116.
  • 54. Yuan Z. Y., Chen H. Y. H., Reich P. B. 2011 – Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus – Nat. Comm. 2: 344.
  • 55. Zhang H. X., Zhang M. L., Ma L. N. 2015 – Genetic structure and historical demography of Malus sieversii in the Yili Valley and the western mountains of the Junggar Basin, Xinjiang, China – J. Arid Land 7: 264-271 (in Chinese, English summary).
  • 56. Zhang M. X., Luo Y., Yan Z. B. et al. 2019a – Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity – J. Plant Ecol. 12: 358-366.
  • 57. Zhang P., Cui Z., Xu H. et al. 2020 – Thirst or malnutrition: The impacts of invasive insect Agrilus mali on the physiological status of wild apple trees – Forests, 11: 440.
  • 58. Zhang P., Lv Z. Z., Zhang X. et al. 2019b – Age structure of Malus sieversii population in Ili of Xinjiang and Kazakhstan – Arid Zone Res. 36: 844-853 (in Chinese, English summary).
  • 59. Zhang X. S. 1973 – On the eco-geographical characters and the problems of classification of the wild fruit-tree forest in the Ili valley of Sinkiang – Acta Bot. Sin. 15: 239-253 (in Chinese, English summary).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74ed25a0-3184-4f9c-9698-1af300fb13cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.