Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
During their long-term storage and transport, polymer bonded explosives (PBXs) will be subjected to complex thermal physical environments with combined thermal and mechanical loads. The creep behaviour results in a change of physical and mechanical properties, which consequently influences the explosive performance. In this work, graphene and a neutral polymeric bonding agent (NPBA) were selected to improve the non-linear creep properties of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)-based PBXs. The results were compared with the creep response of the corresponding PBXs without additives and with graphene alone. It was observed that graphene and an NPBA exhibited a positive effect, improving the creep resistance of TATB-based PBXs. The compressive and tensile strength of 0.5 wt.% graphene-filled PBXs were improved by 5.1% and 29.2%, respectively, compared to raw TATB-based PBXs without additives. The performance of the PBXs was further enhanced by the addition of 0.1 wt.% NPBA. For a given stress and temperature, the TATB-based PBXs with graphene and NPBA deformed significantly less than the PBXs filled with graphene alone.
Rocznik
Tom
Strony
788--805
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Institute of Chemical Materials, CAEP, Mianshan Load 64#, 621900 Mianyang, China
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, 610065 Chengdu, China
autor
- Institute of Chemical Materials, CAEP, Mianshan Load 64#, 621900 Mianyang, China
autor
- Institute of Chemical Materials, CAEP, Mianshan Load 64#, 621900 Mianyang, China
autor
- Institute of Chemical Materials, CAEP, Mianshan Load 64#, 621900 Mianyang, China
autor
- Institute of Chemical Materials, CAEP, Mianshan Load 64#, 621900 Mianyang, China
Bibliografia
- [1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306: 666-669.
- [2] Gong, L.; Yin, B.; Li, L. P.; Yang, M. B. Nylon-6/Graphene Composites Modified Through Polymeric Modification of Graphene. Composites Part B 2015, 73: 49-56.
- [3] Liu, L. Q.; Gao, Y.; Liu, Q.; Kuang, J.; Zhou, D.; Ju, S. T.; Han, B. H.; Zhang, Z. High Mechanical Performance of Layered Graphene Oxide/Poly(vinyl alcohol) Nanocomposite Films. Small 2013, 9: 2466-2472.
- [4] Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater. 2011, 10: 569-581.
- [5] Gedler, G.; Antunes, M.; Velasco, J. I. Viscoelastic Properties of Polycarbonate-Graphene Nanoplatelets Nanocomposite Foams. Composites Part B 2016, 93: 143-152.
- [6] Wang, H.; Xie, G. Y.; Fang, M. H.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and Mechanical Properties of Antistatic PVC Films Containing Multi-layer Graphene. Composites Part B 2015, 79: 444-450.
- [7] Ganguli, S.; Roy, A. K.; Anderson, D. P. Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites. Carbon 2008, 46: 806-817.
- [8] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based Composite Materials. Nature 2006, 442: 282-286.
- [9] Molitor, F.; Güttinger, J.; Stampfer, C.; Dröscher, S.; Jacobsen, A.; Ihn, T.; Ensslin, K. Electronic Properties of Graphene Nanostructures. J. Phys: Condens. Matter 2011, 23: 243201.
- [10] Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alnso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’homme, R. K.; Brinson, L. C. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat. Nanotechnol. 2008, 3: 327-331.
- [11] Yavari, F.; Fard, H. R.; Pashayi, K.; Rafiee, M. A.; Zamiri, A.; Yu, Z. Z.; Ozisik, R.; Borca-Tasciuc, T.; Koratkar, N. Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite Due to Low Concentration Graphene Additives. J. Phys. Chem. C 2011, 115: 8753-8758.
- [12] Qiao, Z. Q.; Shen, J. P.; Wang, J.; Huang, B.; Yang, Z. J.; Yang, G. C.; Zhang, K. L. Fast Deflagration to Detonation Transition of Energetic Material Based on a Quasi-Core/Shell Structured Nanothermite Composite. Compos. Sci. Technol. 2015, 107: 113-119.
- [13] Hobbs, M. L.; Kaneshige, M. J. Ignition Experiments and Models of a Plastic Bonded Explosive (PBX 9502). J. Chem. Phys. 2014, 140: 124203.
- [14] Li, T.; Hua, C.; Li, Q. Shock Sensitivity of Pressed RDX-based Plastic Bonded Explosives under Short-duration and High-pressure Impact Tests. Propellants Explos. Pyrotech. 2013, 38: 770-774.
- [15] Vadhe, P. P.; Manickam, S.; Rahujade, N.; Kondra, A.; Prasad, U.; Sinha, R. K. Studies on Tungsten Based High Density Cast Polymer Bonded Explosive (PBX) Formulations. Cent. Eur. J. Energ. Mater. 2015, 12: 497-506.
- [16] He, G. S.; Yang, Z. J.; Zhou, X. Y.; Zhang, J. H.; Pan, L. P.; Liu, S. J. Polymer Bonded Explosives (PBXs) with Reduced Thermal Stress and Sensitivity by Thermal Conductivity Enhancement with Graphene Nanoplatelets. Compos. Sci. Technol. 2016, 131: 22-31.
- [17] Kaur, J.; Arya, V. P.; Kaur, G.; Lata, P. Evaluation of the Thermo-Mechanical and Explosive Properties of Bimodal and Hybrid Polymer Bonded Explosive (PBX) Compositions Based on HNS and HMX. Cent. Eur. J. Energ. Mater. 2013, 10:371-392.
- [18] Kabir, M. M.; Wang, H.; Lau, K. T.; Cardona, F. Chemical Treatments on Plantbased Natural Fibre Reinforced Polymer Composite: an Overview. Composites Part B 2012, 43: 2883-2892.
- [19] Li, F.; Ye, L.; Nie, F. D.; Liu, Y. G. Synthesis of Boron-containing Coupling Agents and its Effect on the Interfacial Bonding of Fluoropolymer/TATB Composite. J. Appl. Polym. Sci. 2007, 105: 777-782.
- [20] Liu, Y. F.; Chen, Y.; Shi, L.; Yao, W. S. Synthesis of Three Novel Laurylaminederived Long-chain Alkyl Bonding Agents and Their Interactions with RDX. Propellants Explos. Pyrotech. 2012, 37: 69-76.
- [21] John, M. J.; Tlili, R.; Anandjiwala, R. D.; Boudenne, A.; Ibos, L. Effect of Amphiphilic Coupling Agent on Heat Flow and Dielectric Properties of Flax-Polypropylene Composites. Composites Part B 2012, 43: 526-532.
- [22] Liu, J. H.; Liu, S. J.; Chen, L. L.; Lin, C. M.; Gong, F. Y.; Nie, F. D. Improving Mechanical Property of HMX-based PBX with Neutral Polymer Bonding Agent. Int. Annu. Conf. ICT, 45th, Karlsruhe, Germany 2014, 56/1-8.
- [23] Lin, C. M.; He, G. S.; Liu, J. H.; Huang, Z.; Pan, L. P.; Zhang, J. H.; Liu, S. J. Enhanced Non-linear Viscoelastic Properties of TATB-based Polymer Bonded Explosives Filled with Hybrid Graphene/Multiwalled Carbon Nanotubes. RSC Adv. 2015, 5: 94759-94767.
- [24] Lin, C. M.; He, G. S.; Liu, J. H.; Liu, S. J. Improved Thermal Conductivity for TATB-based Polymer Bonded Explosives with Graphene Nanoplatelets. Int. Autumn Seminar on Propellants, Explosives and Pyrotechnics, 6th, Qingdao, China,2015, 402-406.
- [25] Lin, C. M.; He, G. S.; Liu, J. H.; Pan, L. P.; Liu, S. J. Construction and Thermal Properties of Nanostructured Polymer Bonded Explosives with Graphene. RSC Adv. 2015, 5: 98514-98521.
- [26] Lin, C. M.; Liu, J. H.; He, G. S.; Chen, L. L.; Huang, Z.; Gong, F. Y.; Liu, Y. G.; Liu, S. J. Non-linear Viscoelastic Properties of TATB-based Polymer Bonded Explosives Modified by a Neutral Polymeric Bonding Agent. RSC Adv. 2015, 5:35811-35820.
- [27] Wen, M. P.; Tang, W.; Zhou, X. Y.; Pang, H. Y.; Zhu, F. Y. Tensile Mechanical Properties of Brittle Explosives Evaluated by Arc Compress Head Brazilian Test. Chinese J. Energ. Mater. 2013, 21: 490-494.
- [28] Chen, P. W.; Huang, F. L.; Ding, Y. S. Microstructure, Deformation and Failure of Polymer Bonded Explosives. J. Mater. Sci. 2007, 42: 5272-5280.
- [29] National Military Standard of China, Experimental Methods of Sensitivity and Safety (in Chinese), GJB-772A-97, 1997.
- [30] Carter, J. A.; Zaug, J. M.; Nelson, A. J.; Armstrong, M. R.; Manaa, M. R. Ultrafast Shock Compression and Shock-induced Decomposition of 1,3,5-Triamino-2,4,6-trinitrobenzene Subjected to a Subnanosecond-duration Shock: an Analysis of Decomposition Products. J. Phys. Chem. A 2012, 116: 4851-4859.
- [31] Feng, Q. P.; Shen, X. J.; Yang, J. P.; Fu, S. Y.; Mai, Y. W.; Friedrich, K. Synthesis of Epoxy Composites with High Carbon Nanotube Loading and Effects of Tubular and Wavy Morphology on Composite Strength and Modulus. Polymer 2011, 52:6037-6045.
- [32] Yang, J. L.; Zhang, Z.; Schlarb, A. K.; Friedrich, K. On the Characterization of Tensile Creep Resistance of Polyamide 66 Nanocomposites, Part II: Modeling and Prediction of Long-term Performance. Polymer 2006, 47: 6745-6758.
- [33] Li, Y. Z.; Kessler, M. R. Creep-resistant Behavior of Self-reinforcing Liquid Crystalline Epoxy Resins. Polymer 2014, 55: 2021-2027.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74e888a5-43ca-46f7-a4c0-541942c59b44