Identyfikatory
Warianty tytułu
Strojony filtr pasmowy Gm-C o częstotliwości 10.7 MHz dobroci 267 i dynamice 103 dB
Języki publikacji
Abstrakty
A 10.7-MHz fully balanced, high-Q, wide-dynamic-range current-tunable Gm-C bandpass filter is presented. The technique is relatively simple based on three fully balanced components, i.e. an adder, a low-Q-based bandpass filter and a differential amplifier. The high-Q factor is possible through a tunable bias current. As a simple example at 10.7 MHz, the paper demonstrates the high-Q factor of 267, the low total output noise of 2.089 Vrms, the 3rd-order intermodulation-free dynamic range (IMFDR3) of 82.59 dB and the wide dynamic range of 103 dB at 1% IM3. The center frequency is current tunable over 3 orders of magnitude. Comparisons to other 10.7-MHz Gm-C approaches are also included.
Zaprezentowano strony prądowo filtr zrównoważony 10.7 MHz pasmowy Gm-C. Technologia bazuje na trzech elementach – sumatorze, filtrze pasmowym i wzmacniaczu różnicowym. Osiągnięto dużą dobroć dzięki strojeniu prądowemu. Przedstawiono przykład filtru i porównano z innymi filtrami.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
204--209
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
Bibliografia
- [1] P. J., Quinn., “High-Accuracy Charge-Redistribution SC Video Bandpass Filter in Standard CMOS,” IEEE Journal of Solid- State Circuits, 33(1998), no.7, 963-975.
- [2] A. E. P.Engelen, J. Plassche, E. Stikvoort, and A. G. Venes, “A Sixth-Order Continuous-Time Bandpass Sigma-Delta Modulator for Digital Radio IF,” IEEE Journal of Solid-State Circuits, 34(1999), 1753-1764.
- [3] D. Hernandez-Garduno and J. Silva-Martinez, “Continuous-Time Common-Mode Feedback for High-Speed Switched- Capacitor Networks,” IEEE J. of Solid-State Circuit, 40(2005), 1610-1617.
- [4] J. Silva-Martinez, J. Adut and M. Rocha-Perez, “A 58dB SNR 6th Order Broadband 10.7 MHz SC Ladder Filter,” IEEE Custom Integrated Circuits Conference, (2003) 13-16.
- [5] S. A. Hammouda, “A 1.5V Opamp Design its High Gain Wide Bandwidth and its Application in a High Q Bandpass Filter Operating at 10.7 MHz,” IEEE Trans. on Circuits. and Systems., 38(2002), 185-188.
- [6] P. J. Quinn, K. van Hartingsveldt and A. H. M. van Roermund., “ A 10.7-MHz CMOS SC Radio IF Filter Using Orthogonal Hardware Modulation,” IEEE Journal of Solid-State Circuits., 35(2000), no.12, 1865-1876.
- [7] A. Nagsri and G. Nicollini, “A 3 V 10 MHz Pseudo-Differential SC Bandpass Filter Using Gain Enhancement Replica Amplifier,” IEEE Journal of Solid-State Circuits, 33(1998). 626-630.
- [8] A. Nagari, A. Baschirotto and R. Castello, “A 10.7 MHz BiCMOS High-Q Double-Sampled SC Bandpass Filter,” IEEE Journal of Solid-State Circuits, 32(1997), 1491-1498.
- [9] A. Tajalli and M. Atarodi, “Design Considerations for a 1.5-V, 10.7-MHz Bandpass Gm-C Filter in a 0.6-um Standard CMOS Technology,” IEEE ISCAS’03, 1(2003), I-521 –I-52.
- [10] W. Chung-Yu and C. Chung-yun., “The Design of a CMOS IF Bandpass Amplifier with Low Sensitivity to Process and Temperature Variations,” IEEE ISCAS 2001, 1(2001), 121- 124.
- [11] F. Munoz, A. Torralba, R.G. Carvajal, J. Tombs, and J. Ramirez-Angulo, “Floating-Gate-Based Tunable CMOS Low- Voltage Linear Transconductor and Its Applications to HF Gm-C Filter Design,” IEEE Trans. on Circuits and Systems-I, 48(2001). no.1, 106-110.
- [12] J. Stevenson and S. Edgar, “An Accurate Quality Factor Tuning Scheme for IF and High-Q continuous-time filters,” IEEE Journal of Solid-State Circuits, 33(1998), no.12, 1970-1978.
- [13] M. Steyaert and J. Silva-Martinnez, “A 10.7 MHz CMOS OTAR-C Bandpass Filter with 68dB Dynamic Range and on-chip automatic tuning,” IEEE Solid-State Cirt. Conference, (1992). 66-67,
- [14] B. Srisuchinwong, “Fully Balanced Current-Tunable Sinusoidal Quadrature Oscillator,” International J. of Electronics. 87(2000), no. 5, 547-556.
- [15] S. Pookaiyaudom, B. Srisuchinwong, and W.Kurutach, “A Current-Tunable Sinusoidal Oscillator,” IEEE Trans. Instrumentation and measurement, IM-36(1987), no. 3, 725-729.
- [16] D. T. Comer, D. J. Comer and J. R. Gonzzalez, “ Ahigh Frequency Integrable Bandpass Filter Configuration,” IEEE Trans. Circuit and System II, 44(1997), no. 10, 856-861.
- [17] H. Liu and A. Karsilayan, “An Accurate Automatic Tuning Scheme for High-Q Continuous-Time Bandpass Filters Based on Amplitude Comparison,” IEEE Trans. Circuit and System II: Analog and Digital Signal Processing, 50(2003), no. 8, 415-423.
- [18] G. Groenewold, “The Design of High Dynamic Range Continuous-Time Integratable Bandpass Filters,” IEEE Trans. Circuit and System II: Analog and Digital Signal Processing, 38(1991), no. 8, 838-852.
- [19] A. Liscidini, M.Brandolini, D. Sanzogni,and R. Castello, A 0.13 m CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier,” IEEE Journal. of Solid-State Circuits, 41(2006), no. 4, 981-989.
- [20] W. B. Kuhn, D. Nobbe, D. Kelly and A. W. Orsborn, “Dynamic Range Performance of On-Chip RF Bandpass Filters,” IEEE Trans. Circuit and System II: Analog and Digital Signal Processing, 50(2003), no. 10, 685-694.
- [21] Small-Signal Transistor Data, Philips Inc. 2001.
- [22] National Semiconductor Data. 2000.
- [23] RF Transistor Data, Vishay Semiconductor GmbH. 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74e6203a-044b-4dab-b301-352c3940c14d