PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Is there added value of convection-permitting regional climate model simulations for storms over the German Bight and Northern Germany?

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study tackles the question: Do very high-resolution convective-permitting regional climate model (RCM) simulations add value compared to coarser RCM runs for certain extreme weather conditions, namely strong wind and storm situations? Ten strong storm cases of the last two decades were selected and dynamically downscaled with the RCM COSMO-CLM (24 and 2.8 km grid point distance). These cyclones crossed the high-resolution model domain, which encompasses the German Bight, Northern Germany, and parts of the Baltic Sea. One storm case study (storm Christian of October 2013) is discussed in more detail in order to analyze the smallscale storm features and the associated potential added value of the high-resolution simulation. The results indicate an added value for atmospheric dynamical processes such as convective precipitation or post-frontal cloud cover. The multiple storm analysis revealed added value for the high-resolution regional climate simulation for 10 m wind speed, mean sea level pressure, and total cloud cover for most storms which were examined, but the improvements are small. Wind direction and precipitation were already well simulated by the coarser RCM and the higher resolution could often not add any value for these variables. The analysis showed that the added value is more distinct for the synoptic comparisons than for the multiple storm study analyzed with statistical measures like the Brier Skill Score.
Twórcy
autor
  • Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
autor
  • Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Bibliografia
  • Baldauf M., Seifert A., Förstner J., Majewski D., Raschendorfer M., Reinhardt T., 2011, Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Monthly Weather Review, 139 (12), 3887-3905, DOI: 10.1175/MWR-D-10-05013.1
  • Chan S.C., Kendon E.J., Fowler H.J., Blenkinsop S., Roberts N.M, Ferro C.A., 2014, The value of high-resolution Met Office Regional Climate Models in the simulation of multihourly precipitation extremes, Journal of Climate, 27 (16), 6155-6174, DOI: 10.1175/JCLI-D-13-00723.1
  • Cholette M., Laprise R., Thériault J.M., 2015, Perspectives for very high-resolution climate simulations with nested models: illustration of potential in simulating St. Lawrence River Valley channelling winds with the fifth-generation Canadian Regional Climate Model, Climate, 3 (2), 283-307, DOI: 10.3390/cli3020283
  • Di Luca A., Argüeso D., Evans J.P., de Elía R., Laprise R., 2016, Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales, Journal of Geophysical Research Atmospheres, 121 (4), DOI: 10.1002/2015JD024009
  • Di Luca A., de Elía R., Laprise R., 2012, Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations, Climate Dynamics, 38 (5-6), 1229-1247, DOI: 10.1007/s00382-011-1068-3
  • Di Luca A., de Elía R., Laprise R., 2015, Challenges in the quest for added value of regional climate dynamical downscaling, Current Climate Change Reports, 1 (1), 10-21, DOI: 10.1007/s40641-015-0003-9
  • Feser F., Barcikowska M., Krueger O., Schenk F., Weisse R., Xia L., 2015, Storminess over the North Atlantic and Northwestern Europe - a review, Quarterly Journal of the Royal Meteorological Society, 141 (687), 350-382, DOI: 10.1002/ qj.2364
  • Feser F., Rockel B., von Storch H., Winterfeldt J., Zahn M., 2011, Regional climate models add value to global model data: a review and selected examples, Bulletin of the American Meteorological Society, 92 (9), 1181-1192, DOI: 10.1175/2011BAMS3061.1
  • Feser F., von Storch H., 2005, A spatial two-dimensional discrete filter for limited-area-model evaluation purposes, Monthly Weather Review, 133 (6), 1774-1786, DOI: 10.1175/MWR2939.1
  • Feser F., von Storch H., 2008, A dynamical downscaling case study for typhoons in SE Asia using a Regional Climate Model, Monthly Weather Review, 136 (5), 1806-1815, DOI: 10.1175/2007MWR2207.1
  • Gallagher S., Tiron R., Whelan E., Gleeson E., Dias F., McGrath R., 2016, The nearshore wind and wave energy potential of Ireland: a high resolution assessment of availability and accessibility, Renewable Energy, 88, 494-516, DOI: 10.1016/j.renene.2015.11.010
  • Gentry M.S., Lackmann G.S., 2010, Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution, Monthly Weather Review, 138, 688-704, DOI: 10.1175/2009MWR2976.1
  • Geyer B., 2014, High-resolution atmospheric reconstruction for Europe 1948-2012: coastDat2, Earth System Science Data, 6, 147-164, DOI: 10.5194/essd-6-147-2014
  • Geyer B., Rockel B., 2013, coastDat-2 COSMO-CLM, available at: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=coastDat-2_COSMO-CLM (data access 20.02.2018)
  • Haeseler B., Lefebvre C., 2013, Heavy storm CHRISTIAN on 28 October 2013, available at: http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU2/KU24/besondere_ereignisse_global/stuerme/englischeberichte/20131028_CHRISTIAN_europe,templateId=ra w,property=publicationFile.pdf/20131028_CHRISTIAN_europe.pdf (data access 20.02.2018)
  • Kain J.S., Weiss S.J., Levit J.J., Baldwin M.E., Bright D.R., 2006, Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: the SPC/NSSL Spring Program 2004, Weather Forecasting, 21 (2), 167-181, DOI: 10.1175/WAF906.1
  • Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Roy J., Dennis J., 1996, The NCEP/NCAR 40-year reanalysis project, Bulletin of the American Meteorological Society, 77 (3), 437-471, DOI: 10.1175/1520-0477(1996)0772.0.CO;2
  • Klawa M., Ulbrich U., 2003, A model for the estimation of storm losses and the identification of severe winter storms in Germany, Natural Hazards and Earth System Sciences, 3, 725-732, DOI: 10.5194/nhess-3-725-2003
  • Lange I., 2014, Wind- und Temperaturdaten vom Wettermast Hamburg des Meteorologischen Instituts der Universität Hamburg, pers., com.
  • Li D., von Storch H., Geyer B., 2016, High-resolution wind hindcast over the Bohai Sea and the Yellow Sea in East Asia: evaluation and wind climatology analysis, Journal of Geophysical Research, 121 (1), 111-129, DOI: 10.1002/2015JD024177
  • Liberato M.L.R., Pinto J.G., Trigo R.M., Ludwig P., Ordóñez P., Yuen D., Trigo I.F., 2013, Explosive development of winter storm Xynthia over the Southeastern North Atlantic Ocean, Natural Hazards and Earth System Sciences, 13, 2239-2251, DOI: 10.5194/nhess-13-2239-2013.
  • Ludwig P., Pinto J.G., Hoepp S.A., Fink A.H., Gray S.L., 2015, Secondary cyclogenesis along an occluded front leading to damaging wind gusts: windstorm Kyrill, January 2007, Monthly Weather Review, 143 (4), 1417-1437, DOI: 10.1175/MWR-D-14-00304.
  • Neumayer E., Barthel F., 2011, Normalizing economic loss from natural disasters: a global analysis, Global Environmental Change, 21 (1), 13-24, DOI: 10.1016/j.gloenvcha.2010.10.004
  • Nilsson C., Goyette S., Barring L., 2007, Relating forest damage data to the wind field from high-resolution RCM simulations: case study of Anatol striking Sweden in December 1999, Global and Planetary Change, 57 (1-2), 161-176, DOI: 10.1016/j.gloplacha.2006.11.011
  • Parker R.J., Reich B.J., Sain S.R., 2015, A multiresolution approach to estimating the value added by regional climate models, Journal of Climate, 28 (22), 8873-8887, DOI: 10.1175/JCLI-D-14-00557.1
  • Pinto J.G., Fröhlich E.L., Leckebusch G.C., Ulbrich U., 2007, Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM, Natural Hazards and Earth System Sciences, 7 (1), 165-175, DOI: 10.5194/nhess-7-165-2007
  • Prein A.F., Gobiet A., Suklitsch M., Truhetz H., Awan N.K., Keuler K., Georgievski G., 2013, Added value of convection permitting seasonal simulations, Climate Dynamics, 41 (9-10), 26555-262677, DOI: 10.1007/s00382-013-1744-6
  • Prein A.F., Langhans W., Fosser G., Ferrone A., Ban N., Goergen K., Keller M., Tölle M., Gutjahr O., Feser F., Brisson E., Kollet S., Schmidli J., van Lipzig N.M.P., Leung R., 2015, A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges, Reviews of Geophysics, 53 (2), 323-361, DOI: 10.1002/2014RG000475
  • Rockel B., Will A., Hense A., 2008, The Regional Climate Model COSMO-CLM (CCLM), Meteorologische Zeitschrift, 17 (4), 347-348, DOI: 10.1127/0941-2948/2008/0309
  • Schaaf B., von Storch H., Feser F., 2017, Does spectral nudging have an effect on dynamical downscaling applied in small regional model domains?, Monthly Weather Review, 145 (10), 4303-4311, DOI: 10.1175/MWR-D-17-0087.1
  • Schulz J.-P., 2008, Revision of the turbulent gust diagnostic in the COSMO model, COSMO Newsletter, 8, 17-22.
  • Schulz J.-P., Heise E., 2003, A new scheme for diagnosing nearsurface convective gusts, COSMO Newsletter, 3, 221-225.
  • Shapiro M.A., Keyser D., 1990, Fronts, jet streams and the tropopause, [in:] Extratropical Cyclones: the Erik Palmen Memorial Volume, C.W. Newton, E.O. Holopainen (eds.), American Meteorological Society, 167-191.
  • Steppeler J., Doms G., Schättler U., Bitzer H.W., Gassmann A., Damrath U., Gregoric G., 2003, Meso-gamma scale forecasts using the nonhydrostatic model LM, Meteorology Atmospheric Physics, 82 (1-4), 75-96, DOI: 10.1007/s00703-001- 0592-9
  • von Storch H., Feser F., Haeseler S., Lefebvre C., Stendel M., 2014, A violent midlatitude storm in Northern Germany and Denmark, 28 October 2013, [in:] Explaining extreme events of 2013 from a climate perspective, S.C. Herring, M.P. Hoerling, T.C. Peterson, P.A. Scott (eds.), Special supplement to the Bulletin of the American Meteorological Society, 95 (9), 76-78.
  • von Storch H., Langenberg H., Feser F., 2000, A spectral nudging technique for dynamical downscaling purposes, Monthly Weather Review, 128 (10), 3664-3673, DOI: 10.1175/1520-0493(2000)1282.0.CO;2.
  • von Storch H., Zwiers F.W., 2002, Statistical analysis in climate research, Cambridge University Press, Cambridge, 496 pp.
  • Taraphdar S., Mukhopadhyay P., Leung L.R., Zhang F., Abhilash S., Goswami B.N., 2014, The role of moist processes in the intrinsic predictability of Indian Ocean cyclones, Journal of Geophysical Research: Atmospheres, 119 (13), 8032-8048, DOI: 10.1002/2013JD021265
  • Tiedtke M., 1989, A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Monthly Weather Review, 117 (8), 1779-1800, DOI: 10.1175/1520-0493(1989)1172.0.CO;2.
  • Usbeck T., Waldner P., Dobbertin M., Ginzler C., Hoffmann C., Sutter F., Steinmeier C., Volz R., Schneiter G., Rebetez M., 2012, Relating remotely sensed forest damage data to wind data: storms Lothar (1999) and Vivian (1990) in Switzerland, Theoretical and Applied Climatology, 108 (3-4), 451-462, DOI: 10.1007/s00704-011-0526-5
  • Weisse R., Gaslikova L., Geyer B., Groll N., Meyer E., 2014, coastDat - model data for science and industry, Die Küste, 81, 5-18.
  • Weisse R., von Storch H., Callies U., Chrastansky A., Feser F., Grabemann I., Günther H., Pluess A., Stoye T., Tellkamp J., Winterfeldt J., Woth K., 2009, Regional meteorologicalmarine reanalyses and climate change projections, Bulletin of the American Meteorological Society, 90 (6), 849-860, DOI: 10.1175/2008BAMS2713.1.
  • Weisse R., von Storch H., Feser F., 2005, Northeast Atlantic and North Sea storminess as simulated by a Regional Climate Model during 1958-2001 and comparison with observations, Journal of Climate, 18 (3), 465-479, DOI: 10.1175/JCLI- 3281.1.
  • Winterfeldt J., Geyer B., Weisse R., 2010, Using QuikSCAT in the added value assessment of dynamically downscaled wind speed, International Journal of Climatology, 31 (7), 1028-1039, DOI: 10.1002/joc.2105.
  • Winterfeldt J., Weisse R., 2009, Assessment of value added for surface marine wind speed obtained from two regional climate models, Monthly Weather Review, 137 (9), 2955-2965, DOI: 10.1175/2009MWR2704.1.
  • Xue M., Schleif J., Kong F., Thomas K.W., Wang Y., Zhu F., 2013, Track and intensity forecasting of hurricanes: impact of convection-permitting resolution and global ensemble Kalman filter analysis on 2010 Atlantic season forecasts, Weather Forecasting, 28, 1366-1384, DOI: 10.1175/WAF-D-12-00063.1.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74e03450-7f3d-4380-93f2-0c39af5c9eb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.