PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of dE-NOx techniques employed in thermal power plants on fly ash properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ stosowanych w elektrowniach cieplnych technik dE-NOx na właściwości popiołu lotnego
Języki publikacji
EN PL
Abstrakty
EN
Coal fly ash, a by-product of coal combustion in thermal power plants, is one of the most complex and abundant of anthropogenic materials. For several years, fly ash has predominantly been used as a substitute for material in the construction industry, especially either as a raw material or as an additive in the cement industry all over the world. The wide implementation of low-NOx combustion technologies in pulverized coal combustion can lead to changes in fly ash properties, which may negatively affect its applicability to the production of building materials. In the study, brief characterization of current deNOx techniques, applied in power plants for efficient NOx reduction, is presented and possible alterations in fly ash utilization in concrete production are discussed.
PL
Popiół lotny z węgla, uboczny produkt spalania węgla w elektrowniach cieplnych, jest jednym z najbardziej złożonych i obfitych materiałów antropogenicznych. Od kilku lat popiół lotny jest stosowany głównie jako substytut materiału w przemyśle budowlanym, zwłaszcza jako surowiec lub domieszka w przemyśle cementowym na całym świecie. Powszechne wdrożenie technologii spalania pyłu węglowego przy niskiej emisji NOx może prowadzić do zmian właściwości popiołów lotnych, co może zaszkodzić ich przydatności do produkcji materiałów budowlanych. W pracy tej przedstawiono krótką charakterystykę współczesnych technik stosowanych w elektrowniach do skutecznej redukcji NOx oraz omówiono możliwe zmiany w wykorzystaniu lotnego popiołu w produkcji betonu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
58--63
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
  • Department Technology of Concrete CEBET in the Institute of Ceramics and Building Materials.
  • Department Technology of Concrete CEBET in the Institute of Ceramics and Building Materials.
  • Department Technology of Concrete CEBET in the Institute of Ceramics and Building Materials.
Bibliografia
  • 1. Z. Bai et al., “Emission of ammonia from indoor concrete wall and assessment of human exposure”, Environment International, No. 32, 2006, pp. 303–311.
  • 2. W.Bartok, V.Engleman, “Laboratory studies and mathematical modelling of NOx formation in combustion processes”, Linden, New-Jersey: ESSO Research and Engineering Company, Final report, Contract CPAp., 1971, pp. 70–90.
  • 3. J. Bittner, S. Gasiorowski, F. Hrach, “Removing Ammonia from Fly Ash”, Proceedings of International Ash Utilization Symposium, The University of Kentucky, Center for Applied Energy Research, Lexington, USA, Paper No. 15, 2001.
  • 4. J. Bødker, “Afdampning fra beton”, Tech. Rep. 18, Danish Environmental Protection Agency, Danish Ministry of Environment, Copenhagen, Denmark. 2006.
  • 5. G.F. Brendel at al., “Investigation of Ammonia Adsorption on Fly Ash Due to Installation of Selective Catalytic Reduction Systems”, Final Technical Report, DOE Award No. DE-FC26-98FT40028, The University of Kentucky, Center for Applied Energy Research, Lexington, USA, 2000.
  • 6. A.M. Carpenter, “Coal blending for power stations”, Technical Report IEACR/81, International Energy Agency (IEA) Coal Research, London, UK, 1995.
  • 7. J. De Greef et al., “Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants”, Waste Manage, No. 33, 2013, pp. 2416–2424.
  • 8. European Environment Agency, Nitrogen Oxides (NOx) Emissions (APE 002) [Emisje tlenków azotu (NOx) (APE 002)], online http://www.eea.europa.eu/data-and-maps/indicators/eea-32-nitrogen-oxides-nox-emissions-1/assessment.2010-08-19.0140149032-3.
  • 9. E. Freeman at al., “Interactions of carbon-containing fly ash with commercial air-entraining admixtures for concreto” [Interakcje popiołu lotnego zawierającego węgiel z handlowymi domieszkami napowietrzającymi do betonu], Fuel Processing Technology, No. 76(8), 1997, pp. 761–765.
  • 10. Y. Gao et al., “The effect of solid fuel type and combustion conditions on residual carbon properties and fly ash quality”, Proceedings of the Combustion Institute, No. 29, 2002, pp. 475–483.
  • 11. S.A. Gasiorowski, F.J. Hrach, Method for Removing Ammonia from Ammonia Contaminated Fly Ash. U.S. Patent No. 6,077,494, 2000.
  • 12. M. Goemans et al., “Catalytic NOx reduction with simultaneous dioxin and furan oxidation”, Chemosphere, No. 54, 2004, pp. 1357–1365.
  • 13. O. Gohlke et.al., “A new process for NOx reduction in combustion systems for the generation of energy from waste”, Waste Manage, No. 30, 2010, pp. 1348–1354.
  • 14. M.A. Gomez-Garcia, V. Pitchon, A. Kiennemann, „Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials”, Environment International, No. 31, 2005, pp. 445–467.
  • 15. H.R. Hoy, D.W. Gill, “The combustion of coal in fluidized beds”, Chap. 6 [in:] C.J. Lawn (edit.), “Principles of combustion engineering for boilers”, London: Academic Press, 1987, p. 521.
  • 16. R.H. Hurt, J.R. Gibbins, “Residual carbon from pulverized coal fired boilers: 1. size distribution and combustion reactivity”, Fuel Processing Technology, No. 74(4), 1995, pp. 471–480.
  • 17. J. Hwang, “Method for Removal of Ammonia from Fly Ash”, U.S. Patent No. 6,290,066, 2001.
  • 18. R.L. Hill et al., “An examination of fly ash carbon and its interactions with air entraining agent”, Cement and Concrete Research, No. 27(2), 1997, pp. 193–204.
  • 19. Külaots I., Gao Y. M., Hurt R. H., Suuberg E. M., 2001. Adsorption of Ammonia on Coal Fly Ash, Proceedings of International Ash Utilization Symposium, The University of Kentucky, Center for Applied Energy Research, Lexington, USA, Paper No. 59.
  • 20. I. Külaots, R.H. Hurt, E.M. Suuberg, “Size distribution of unburned carbon in coal fly ash and its implications”, Fuel Processing Technology, No. 83(2), 2004, pp. 223–230.
  • 21. B. Liang, “Indoor air pollution—ammonia pollution”, Proceeding of international workshop on indoor air quality State environmental protection administration of China, Beijing, China, 2001, pp. 86–90.
  • 22. T. Lindgren, “A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing”, Building and Environment, No. 45, 2010, pp. 596–600.
  • 23. R.K. Lyon, “Kinetics of the NO-NH3-O2 reaction”, 17th International Symposium on Combustion, The Combustion Institute, Pitsburg, 1978, pp. 601–610.
  • 24. R.K. Lyon, “Thermal deNOx – controlling nitrogen oxides emissions by a non catalytic process”, Environmental Science and Technology, No. 21, 1987, pp. 231–236.
  • 25. K. Łaskawiec et al., “Zastosowanie popiołów ze spalania węgla kamiennego w kotłach fluidalnych do produkcji betonów komórkowych, Cement, Wapno, Beton, No. 17/79, 2012, pp. 14–22.
  • 26. S. Mahmoudi, J. Baeyens, J.P.K. Seville, “NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass”, Biomass and Bioenergy, No. 34, 2010, pp. 1393–1409.
  • 27. O.E. Manz, “Coal fly ash: a retrospective and future look”, Fuel Processing Technology, No. 78(2), 1999, pp. 133–136.
  • 28. R.Y. Minkara, “Control of Ammonia Emission from Ammonia Laden Fly Ash in Concrete”, U.S. Patent No. 6,790,264, 2004.
  • 29. I.P. Murarka et al., “Leaching of Selected Constituents from Ammoniated Fly Ash from a Coal-Fired Power Plant”, Proceedings of International Ash Utilization Symposium, The University of Kentucky, Center for Applied Energy Research, Lexington, USA, 2003, Paper No. 81.
  • 30. T.R. Naik, R. Kumar, “Current innovation in cement-based materials”, Center for By-Products Utilization, University of Wisconsin- Milwaukee, 2003.
  • 31. T.R. Naik, “High-Carbon Fly Ash in Manufacturing Conductive CLSM and Concrete”, Journal of Materials in Civil Engineering, No. 18(6), 2005, pp. 743–746.
  • 32. P. Necker, “Experience gained by Neckarwerke from operation of SCR DeNOx units”, Symposium on Stationary Combustion Nitrogen Oxide Control, 1989, Vol. 2, 6A-19 – 6A-38.
  • 33. M. Novak, H.G. Rych, “Design and operation of SCR-type NOxreduction plants at the Dürnohr power station in Austria”, Symposium on Stationary Combustion Nitrogen Oxide Control, 1989, Vol. 2, 7A-1 – 7A-26.
  • 34. A.M. Paillére, “Application of Admixtures in Concrete:, 1st Edition, E & FN Spoon, London, 1995, pp. 17–22.
  • 35. K.H. Pedersen, “The effect of combustion conditions in a full-scale low-NOx coal fired unit on fly ash properties for its application in concrete mixtures”, Fuel Processing Technology, No. 90(2), 2009, pp. 180–185.
  • 36. K.H. Pedersen, A.D. Jensen, K. Dam-Johansen, “The effect of low-NOx combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete”, Combustion and Flame, No. 157, 2010, pp. 208–216.
  • 37. R.H. Perry, D.W. Green, “Perry’s chemical engineering handbook”, 7th ed. McGraw Hill, 1997.
  • 38. M. Radojevic, “Reduction of nitrogen oxides in flue gases”, Environmental Pollution, No. 102, 1998, pp. 685–689.
  • 39. “Reports on the NOx emissions of the European Environment Agency” [online], https://europa.eu/european-union/about-eu_en [access: 1.02.2017].
  • 40. H. Russell, J. Carmel, T.T. Cong, “Method of Removing Ammonia from Fly Ash and Fly Ash Composition Produced Thereby”, U.S. Patent No. 7,329,397, 2008.
  • 41. K.B. Schnelle, C.A. Brown, “Air pollution control technology handbook. Boca Raton”, Florida, CRC Press, 2002.
  • 42. S. Shanthakumar, D.N. Singh, R.C. Phadke, “Determining Residual Ammonia in Flue Gas Conditioned Fly Ash and Its Influence on the Pozzolanic Activity”, Journal of Testing and Evaluation, No. 39(1), 2010, pp. 1–8.
  • 43. D.P. Teixeira, L.J. Muzio, “Effect of trace combustion species on SNCR performance” [in:] International conference on environmental control of combustion processes, Hawaii, 1991, Paper No. 20.
  • 44. I. Timofeeva et al., “Automated procedure for determination of ammonia in concrete with headspace single-drop micro-extraction by stepwise injection spectrophotometric analysis”, Talanta, No. 133, 2015, pp. 34–37.
  • 45. “Report on the Environment – Nitrogen Oxides Emissions”, US Environmental Protection Agency, 2014, [online] https://cfpub.epa.gov/roe/indicator.cfm?i=15.
  • 46. J. Van Caneghem et al., “NOx reduction in waste incinerators by selective catalytic reduction (SCR) instead of selective non catalytic reduction (SNCR) compared from a life cycle perspective: a case study”, Journal of Cleaner Production, No. 112, 2016, pp. 4452–4460.
  • 47. K. Wesche (Ed.), 1991. “Fly ash in concrete: properties and performance”, 1st Edition, E & FN Spoon, London, 1991, pp. 3–24, 42–62, 117–143.
  • 48. Z. Wu, “Understanding fluidised bed combustion (CCC/76)”, London: IEA Clean Coal Centre, 2003.
  • 49. Z.T. Yao et al., “A comprehensive review on the applications of coal fly ash”, Earth-Science Reviews, No. 141, 2015, pp. 105–121.
  • 50. Y. Zeldovich, “The oxidation of nitrogen in combustion and explosions”, Acta Physicochimica USSR, No. 21, 1945, pp. 577–628.
  • 51. B.J. Zhong, P.V. Roslyakov, “Study on prompt NOx emission in boilers”, Journal of Thermal Science, No. 5, 1996, pp. 143–147.
Uwagi
1. Wersja polska na stronach 58--63.
2. Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74d9a6ec-9e42-49cc-baec-045573c68979
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.