PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ReMo3D – an open-source Python package for 2D and 3D simulation of normal and lateral resistivity logs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An open-source Python package is presented, ReMo3D, which allows the generation of synthetic normal and lateral resistivity logs for 2D and 3D models. The package is built around a finite element mesh generator Gmsh and a high-performance multiphysics finite element software Netgen/NGSolve and supports distributed-memory parallel computation. The examples included in the paper show that the developed software can accurately simulate the measurement process and produce detailed synthetic normal and lateral resistivity logs. In addition, basic information about normal and lateral tools such as tool configurations, measurement principles, nomenclature and a brief history of utilization is included in the paper.
Wydawca
Rocznik
Strony
195--211
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics, Krakow, Poland
Bibliografia
  • Acworth I., 2019. Investigating Groundwater. CRC Press, London. https://doi.org/10.1201/9781351008525.
  • Allaud L.A. & Martin M.H., 1977. Schlumberger: The history of a Technique. John Wiley & Sons, New York.
  • Alpin L.M., 1938. K teorii elektricheskogo karotazha burovykh skvazhin. ONTINKTІP, Moskva [Альпин Л.М., 1938. К теории электрического каротажа буровых скважин. ОНТИНКТІП, Москва].
  • Anderson B.I., 2001. Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response. Delft University Press, Delft [Ph.D. thesis].
  • Asquith G. & Krygowski D., 2004. Basic Well Log Analysis. 2nd ed. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/Mth16823.
  • Bittar M.S., Shattuck D.P. & Shen L.C., 1995. Finite-element modeling of the normal resistivity tool in azimuthally inhomogenous formations. Journal of Petroleum Science and Engineering, 14, 1–2, 59–63. https://doi.org/10.1016/0920-4105(95)00029-1.
  • Brock J., 1986. Applied open-hole log analysis. Gulf Publishing Company, Houston.
  • Dakhnov V.N., 1941. Karotazh skvazhin:Interpretatsiya karotazhnykh diagramm. Gosgeoltekhizdat, Moskva [Дахнов В.Н., 1941. Каротаж скважин: Интерпретация каротажных диаграмм. Госгеолтехиздат, Москва].
  • Dalcin L. & Fang Y.-L., 2021. mpi4py: Status update after 12 years of development. Computing in Science and Engineering, 23, 4, 47–54. https://doi.org/10.1109/MCSE.2021.3083216.
  • Dalcin L., Paz R. & Storti M., 2005. MPI for Python. Journal of Parallel and Distributed Computing, 65, 9, 1108–1115. https://doi.org/10.1016/J.JPDC.2005.03.010.
  • Dalcin L., Paz R., Storti M. & D’Elia J., 2008. MPI for Python: Performance improvements and MPI-2 extensions. Journal of Parallel and Distributed Computing, 68, 5, 655–662. https://doi.org/10.1016/J.JPDC.2007.09.005.
  • Dalcin L.D., Paz R.R., Kler P.A. & Cosimo A., 2011. Parallel distributed computing using Python. Advances in Water Resources, 34, 9, 1124–1139. https://doi.org/10.1016/ J.ADVWATRES.2011.04.013.
  • Frenkel M.A., 2003. A Model-Based Method to Supply Missing Log Information. [in:] Proceedings of the AAPG Annual Meeting, Extended Abstracts, Salt Lake City 11–14 May 2003, 1–7.
  • Frenkel M.A., Mezzatesta A.G. & Strack K.-M., 1997. Enhanced Interpretation of Russian and Old Electrical Resistivity Logs Using Modeling and Inversion Methods. [in:] Proceedings, 1997 SPE Annual Technical Conference and Exhibition: 5-8 October 1997, San Antonio, Texas, SPE-38688-MS, Society of Petroleum Engineers. https://doi.org/10.2118/38688-MS.
  • Galsa A., Herein M., Drahos D. & Herein A., 2016. Effect of the eccentricity of normal resistivity borehole tools on the current field and resistivity measurement. Journal of Applied Geophysics, 134, 281–290. https://doi.org/10.1016/J.JAPPGEO.2016.09.001.
  • Geuzaine C. & Remacle J.-F., 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79, 11, 1309–1331. https://doi.org/10.1002/nme.2579.
  • Glinskikh V., Dudaev A., Nechaev O. & Surodina I., 2017. High-performance computing on GPUs for resistivity logging of oil and gas wells. [in:] Application of Mathematics in Technical and Natural Sciences: 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences – Amitans ′17, AIP Conference Proceedings, 1895, 120005, AIP Publishing. https://doi.org/10.1063/1.5007422.
  • Imamura S., 1992. Imaging Technique of Near-Borehole Resistivity Structure From Normal Resistivity Logs. [in:] Proceedings of the SPWLA 33rd Annual Logging Symposium, Oklahoma City 14–17 June 1992, SPWLA-1992-F, 1–21.
  • Imamura S. & Shima H., 1991. Near-borehole Resistivity Imaging Using Normal Resistivity Logs. [in:] Proceedings of the 1991 SEG Annual Meeting, SEG Technical Program Expanded Abstracts, Houston 10–14 November 1991, SEG-1991-0145, 145–147. https://doi.org/10.1190/1.1889020.
  • International Atomic Energy Agency (IAEA), 2001. Characterization of groundwater flow for near surface disposal facilities. International Atomic Energy Agency, Vienna.
  • Jakubowicz W., 1995. Russian well log mnemonics. [in:] Harrison B. (ed.), Russian-Style Formation Evaluation, The London Petrophysical Society and The Geological Society London, London, 211–220.
  • Jorden J.R. & Campbell F.L., 1986. Well Logging II – Electric and Acoustic Logging. Society of Petroleum Engineers, New York.
  • Karataş D.C., Zaman U. & Ulugergerli E.U., 2019. An approach to obtain the structural information from the electrical resistivity well logging curves. Bulletin of the Mineral Research and Exploration, 158, 158, 345–352. https://doi.org/10.19111/bulletinofmre.451546.
  • Keys W.S., 1970. Borehole geophysics as applied to groundwater. [in:] Morley L.W (ed.), Mining and Groundwater Geophysics, 1967: Proceedings of the Canadian Centennial Conference on Mining and Groundwater Geophysics, Held at Niagara Falls, Canada, in October 1967, Department of Energy, Mines, and Resources, Ottawa, 598–614.
  • Keys W.S., 1990. Borehole geophysics applied to ground-water investigations. United States Government Printing Office, Washington. https://doi.org/10.3133/twri02E2.
  • Keys W.S. & MacCary L.M., 1971. Application of borehole geophysics to water-resources investigations. United States Government Printing Office, Washington. https://doi.org/10.3133/twri02E1.
  • Nam M.J., Pardo D., Torres-Verdín C., Hwang S., Park K.G. & Lee C., 2010. Simulation of eccentricity effects on short- and long-normal logging measurements using a Fourier-hp-finite-element method. Exploration Geophysics, 41, 1, 118–127. https://doi.org/10.1071/EG09053.
  • Ogilvy A.A., 1970. Geophysical prospecting for groundwater in the Soviet Union. [in:] Morley L.W (ed.), Mining and Groundwater Geophysics, 1967: Proceedings of the Canadian Centennial Conference on Mining and Groundwater Geophysics, Held at Niagara Falls, Canada, in October 1967, Department of Energy, Mines, and Resources, Ottawa, 536–543.
  • Schöberl J., 1997. NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, 1, 41–52. https://doi.org/10.1007/s007910050004.
  • Schöberl J., 2014. C++11 Implementation of Finite Elements in NGSolve. Vienna University of Technology, Vienna.
  • Serra O., 1984. Fundamentals of well-log interpretation. 1: The acquisition of logging data. Elsevier, Amsterdam.
  • Tingey J.C., Nelson R.J. & Newsham K.F., 1995. Comprehensive Analysis Of Russian Petrophysical Measurements. [in:] Proceedings of the SPWLA 36th Annual Logging Symposium, Paris 26–29 June 1995, SPWLA1995-S, 1–12.
  • Tittman J., 1986. Geophysical Well Logging. Academic Press Inc., Orlando.
  • Towle G.H., Whitman W.W. & Kim J.-H., 1988. Electric Log Modeling with a Finite Difference Method. The Log Analyst, 29, 3, 184–195.
  • Ulugergerli E.U., 2011. Two dimensional combined inversion of short- and long-normal dc resistivity well log data. Journal of Applied Geophysics, 73, 2, 130–138. https://doi.org/10.1016/j.jappgeo.2010.12.004.
  • Vincent M., Williams F.G., 1995. Unfocused resistivity. [in:] Harrison B. (ed.), Russian-Style Formation Evaluation, The London Petrophysical Society and The Geological Society London, London, 129–156.
  • Whitman W.W., Schön J., Towle G. & Kim J.-H., 1990. An Automatic Inversion of Normal Resistivity Logs. The Log Analyst, 31, 1, 10–19.
  • Whitman W.W., Towle G. & Kim J.-H., 1989. Inversion of Normal and Lateral Well Logs with Borehole Compensation. The Log Analyst, 30, 1, 1–11.
  • Wiltgen N.A., 1994. The Essential of Basic Russian Well Logs and Analysis Techniques. [in:] Proceedings of the SPWLA 35th Annual Logging Symposium, Tulsa 19–22 June 1994, SPWLA-1994-II, 1–19.
  • Wiltgen N.A. & Truman R.B., 1993. Russian Lateral (BKZ) Analysis. [in:] Proceedings of the SPE Annual Technical Conference and Exhibition, Houston 3–6 October 1993, SPE-26433-MS, 1–7. https://doi.org/10.2118/26433-MS.
  • Yang F.-W. & Ward S.H., 1984. Inversion of Borehole Normal Resistivity Logs. Geophysics, 49, 9, 1541–1548. https://doi.org/10.1190/1.1441779.
  • Yang W. & Shi Q., 1999. Apply 2-D Rapid Iterative Inversion for Lateral Resistivity Logs. [in:] Proceedings of the SPWLA 40th Annual Logging Symposium, Oslo 30 May – 3 June 1999, SPWLA-1999-CCC, 1–9.
  • Yuratich M.A. & Meger W.J., 1984. The Application of Finite Difference Methods to Normal Resistivity Logs. [in:] Proceedings of the SPWLA 25th Annual Logging Symposium, New Orleans 10-13 June 1984, SPWLA1984-V, 1–20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74d554f1-6532-4690-91a4-089159a53b13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.