PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The assessment of unmanned vessel operation in heavy traffic areas. case study of the North Sea Crossing by unmanned surface vessel sea-kit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The continuous development of autonomous and unmanned technology is accelerating the adop-tion of unmanned vessels for various maritime operations. Despite the technological develop-ments there is still a lack of clear regulatory and organizational frameworks for testing and exploiting the potential of unmanned surface vessels (USVs) in real-world maritime conditions. Such real-world testing becomes ever more complex when operating in multiple nations territo-rial waters. In May 2019 USV ‘Maxlimer’ crossed the North Sea from the United Kingdom to Bel-gium and back, carrying goods, to demonstrate the ability of unmanned surface vessels to interact with real marine traffic in an uncontrolled environment. The paper presents this mission in light of the current state of marine autonomy projects as well as the regulatory works con-ducted by various organizations worldwide.
Rocznik
Strony
41--67
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Polish Naval Academy, Śmidowicza 69 str., 81-127 Gdynia
  • Polish Naval Academy, Śmidowicza 69 str., 81-127 Gdynia
  • Polish Navy, 3rd Flotilla of Ships, Rondo Bitwy pod Oliwą 1, 81-127 Gdynia, Poland
  • Sea-Kit Int., Blackwater House, Woodrolfe Rd, Tollesbury, Essex, CM9 8SE, United Kingdom
Bibliografia
  • 1. Allianz, 2018. Safety and Shipping Review, An annual review of trends and developments in ship-ping losses and safety. https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/AGCS-Safety-Shipping-Review-2018.pdf.
  • 2. Advanced Autonomous Waterborne Applications Initiative (AAWA), 2016. Remote and Autono-mous Ship – The Next Steps. https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/ marine/ship-intel/aawa-whitepaper-210616.pdf. (07.01.2020).
  • 3 Bluebird, 2020. www.bluebird-elec-tric.net/oceanography/Ocean_Plastic_International_Rescue/SeaVax_Ocean_Clean_Up_Robot_Drone_Ship_Sea_Vacuum.htm. (13.02.2020).
  • 4. Carey, L., 2017. All hands-off deck? The Legal Barriers to Autonomous Ships. NUS Centre for Maritime Law Working Paper 17/06. https://law.nus.edu.sg/cml/pdfs/wps/CML-WPS-1706.pdf. (05.02.2020).
  • 5. Congressional Research Service (CRS), 2019. Navy Large Unmanned Surface and Undersea Vehi-cles: Background and Issues for Congress, https://fas.org/sgp/crs/weapons/R45757.pdf. (01.02.2020).
  • 6. Comité Maritime International (CMI), 2018. International Working Group Position Paper On Unmanned Ships And The International Regulatory Framework. https://comitemaritime.org/work/mass/. (04.02.2020).
  • 7. (COLREGs) Convention on the International Regulations for Preventing Collisions at Sea. 1972.
  • 8. Felski, A. and Jaskólski, K., 2012. Information unfitness as a factor constraining Automatic Identi-fication System (AIS) application to anti-collision manoeuvring, Polish Maritime Research, 3(75) 2012 Vol 19.
  • 9. Felski, A., Jaskolski, K. and Banyś, P., 2015. Comprehensive Assessment of Automatic Identifica-tion System (AIS) Data Application to Anti-collision Manoeuvring. Journal of Navigation. 68. 10.1017/S0373463314000897.
  • 10. Hartkopf-Mikkelsen, J., 2014. DNV GL: Unmanned container vessels could become reality in five years. https://shippingwatch.com/suppliers/article9024890.ece. (05.02.2020).
  • 11. Hertog, V., 2018. RAmora - New Possibilities for Ship Handling. British Tugowners Association Conference, 18 April 2018. https://www.ukchamberofshipping.com/documents/1030/Vince_denHertog_RAL_BTA_ 2018_v2.pdf. (03.02.2020).
  • 12. International Maritime Organization (IMO), 2018. IMO takes first steps to address autonomous ships. http://www.imo.org/en/MediaCentre/PressBriengs/Pages/08-MSC-99-MASS-scoping.aspx. (22.01.2020).
  • 13. International Maritime Organization Legal Committee (IMO LEG), 2018. IMO Legal Committee 105th session, 23-25 April 2018, http://www.imo.org/en/MediaCentre/MeetingSummaries/Legal/Pages/LEG-105th-session.aspx. (22.01.2020).
  • 14. International Maritime Organization Maritime Safety Committee (IMO MSC), 2017. Maritime Safety Committee 98th session, 7-16 June 2017, http://www.imo.org/en/MediaCentre/MeetingSummaries/MSC/Pages/MSC-98th-session.
  • 15. International Telecommunication Union (ITU), 2014. Recommendation ITU-R M.1371-5, ‘Tech-nical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band’, https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-I!!PDF-E.pdf
  • 16. Jokioinen, E., 2016. Advanced Autonomous Waterborne Applications (AAWA) Initiative. MESA’s “The Connected Ship and Shipping”, Brussels 29.6.2016. https://www.waterborne.eu/media/18556/Advanced-Autonomous-Waterborne-Applications-AAWA-Initiative.pdf
  • 17. Koikas, G., Papoutsidakis, M., Nikitakos, N., 2019. New Technology Trends in the Design of Auton-omous Ships, International Journal of Computer Applications. Volume 178, No. 25. https://www.ijcaonline.org/archives/volume178/number25/koikas-2019-ijca-919043.pdf
  • 18. Kongsberg. 2020. Autonomous Ship Project, key facts about Yara Birkeland. The World's First Zero-Emission, Autonomous Container Feeder. https://www.kongsberg.com/maritime/support/themes/autonomous-ship-project-key-facts-about-yara-birkeland/. (05.02.2020).
  • 19. Koziński, M., 2011. Wybrane problemy nowej regulacji przewozu ładunku w polskim prawie morskim, (in Polish), Prawo Morskie, No XXVII, p. 26.
  • 20. Loyd’s Register (LR), 2017. LR Code for Unmanned Marine Systems, London.
  • 21. MarineInsight, 2014. Dover Strait crossings: channel navigation information service (CNIS). https://www.gov.uk/government/publications/dover-strait-crossings-channel-navigation-information-service/dover-strait-crossings-channel-navigation-information-service-cnis. (03.01.2020).
  • 22. MarineInsight, 2019. The Strait Of Dover- The Busiest Shipping Route In The World.
  • 23. https://www.marineinsight.com/marine-navigation/the-strait-of-dover-the-busiest-shipping-route-in-the-world/. (03.01.2020).
  • 24. Miętkiewicz, R., 2018. Unmanned surface vehicles in maritime critical infrastructure protection applications - LNG Terminal in Świnoujście, Scientific Journal of Polish Naval Academy, 2018 (LIX) 2 (213). www.amw.gdynia.pl/images/AMW/Menu-zakladki/Nauka/Zeszyty_naukowe/Numery_archiwalne/2018/2018_2/Miętkiewicz.pdf
  • 25. MUNIN, 2016. Research in maritime autonomous systems: Project results and technology poten-tials, https://www.cml.fraunhofer.de/content/dam/cml/de/documents/Sonstiges/MUNIN%20-%20final%20brochure.pdf (07.02.2020).
  • 26. NATO Industrial Advisory Group (NIAG), 2004. Pre-Feasibility Study on UAV Autonomous Opera-tions, NATO Industrial Advisory Group Special Group 75. (04.01.2020).
  • 27. Norwegian Forum for Autonomous Ships (NFAS), 20017. Definitions for Autonomous Merchant Ships, Norway, http://nfas.autonomous-ship.org/resources/autonom-defs.pdf. (05.02.2020).
  • 28. Oceanalpha, 2020. Autonomous Cargo Ship. https://www.oceanalpha.com/product-item/cloudborne/ (04.02.2020).
  • 29. Proctor, A.; Zarayskaya, Y.; Bazhenowa, E.; Sumiyoshi, M.; Wigley, R. A.; Roperez, J.; Zwolak, K.; Sattiabaruth, S.; Sade, H.; Tinmouth, N., 2018. Unlocking the Power of Combined Autonomous Operations with Underwater and Surface Vehicles: Success with a Deep-Water Survey AUV and USV Mothership. In OCEANS, Kobe.
  • 30. QinetiQ, 2016. Propeling maritime technology. HIS Fairplay. www.slideshare.net/ChristianAzolan/qinetiq2016. (13.02.2020)
  • 31. RAND, 2013. U.S. Navy Employment U.S. Navy Employment Options for Unmanned Surface Vehi-cles (USVs). https://www.rand.org/content/dam/rand/pubs/research_reports/RR300 /RR384/RAND_RR384.pdf (10.02.2020).
  • 32. Rodseth, Ø.J., Burmeister, H.C., 2012. Developments toward the unmanned ship, http://www.unmanned-ship.org/munin/wp-content/uploads/2012/08/R%C3%B8dseth-Burmeister-2012-Developments-toward-the-unmanned-ship.pdf (05.02.2020).
  • 33. Rudziński, D., 2019. Morski autonomiczny statek nawodny - MASS https://www.gospodarkamorska.pl/Porty,Transport/morski-autonomiczny-statek-nawodny-%E2%80%91-mass.html. (01.02.2020).
  • 34. Rymarz, W., 2004. Międzynarodowe prawo drogi morskiej w zarysie. Trademar. Gdynia (in Polish).
  • 35. Ship Technology, 2017. Hronn Autonomous Offshore Support Vessel. https://www.ship-technology.com/projects/hronn-autonomous-offshore-support-vessel/
  • 36. United Nations Convention on the Law of the Sea (UNCLOS), 1983. Dec. 10, 1982, 1833 U.N.T.S. 397.
  • 37. Williams, A., 2019. The Mayflower Autonomous Ship. https://www.plymouth.ac.uk/news/a-mayflower-for-a-new-generation. (23.02.2020).
  • 38. Williams, R., 2008. Autonomous systems overview. BAE Systems. http://www.aircraftbuilders.com/files/2716/File/BAE_%20Systems_Text_Version.pdf. (18.02.2020).
  • 39. Zarayskaya, Y.; Wallace, C., Wigley, R. A.; Zwolak, K.; Bazhenova, E.; Bohan, A.; Elsaied, M.; Rope-rez, J.; Sumiyoshi, M.; Sattiabaruth, S.; Dorshow, W.; Ketter, T.; Sade, H.; Proctor, A.; Rhyzow, I.; Tinmouth, N.; Simpson, B.; Kristoffersen, S.M., 2019. GEBCO-NF Alumni Team Technology Solu-tion for Shell Ocean Discovery XPRIZE Final Round. In OCEANS, Marseille.
  • 40. Zwolak, K.; Simpson, B.; Anderson, R.; Bazhenowa, E.; Falconer, R.; Kearns, T.; Minami, H.; Rope-rez, J.; Rosedee, A.; Sade, H.; Tinmouth, N.; Wigley, R.A.; Zarayskaya, Y., 2017. An unmanned sea-floor mapping system: The concept of an AUV integrated with the newly designed USV SEA-KIT. In OCEANS, Aberdeen.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74d43d37-d626-4589-9200-a9bd78436d41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.