PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of pulp temperature on separation of magnesite from dolomite in sodium oleate flotation system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of pulp temperature on the floatability of magnesite and dolomite were studied by flotation test. Inductive Coupled Plasma Emission Spectrometer (ICP) was used to measure the dissolved metal ion content in the pulp by minerals in solution. X-ray photoelectron spectroscopy (XPS) was used to measure the presence and relative content of metal ions on mineral surfaces and the amount of sodium oleate adsorbed on mineral surfaces was measured by UV-Visible Spectrophotometer (UV-Vis). The results show that magnesite and dolomite have a great difference in flotation performance when the pulp temperature is 15 ℃ and the effective separation of magnesite from dolomite can be achieved. The main reason is that after the pulp is stirred at a pulp temperature of 15 ℃ and the pH of the pulp is adjusted with HCl and NaOH, the amount of metal ions remaining on the surface of the magnesite is much larger than that on the surface of the dolomite. Therefore, the active targets (metal ion) adsorbing oleate ions on the surface of the magnesite are more than that on the dolomite. When magnesite and dolomite coexist, oleic acid ion mainly acts on the surface of magnesite at the optimum temperature, which makes magnesite float up and the separation of magnesite from dolomite could be achieved.
Słowa kluczowe
Rocznik
Strony
1049--1058
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
  • Liaoning Key Laboratory of Mineral Processing Technology, Shenyang 110819, China
  • Northeastern University Genetic Mineral Processing Research Center, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
  • Faculty of resource probing engineering, Kim Chaek University of Technology, Pyongyang, D.P.R. Korea
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
autor
Bibliografia
  • ANASTASSAKIS, G. N., 1999, A study on the separation of magnesite fines by magnetic carrier methods, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 149(1/2/3): 585–593.
  • BEÉNÉZETH, P., DANDURAND, J., HARRICHOURY, J., 2009, Solubility product of siderite (FeCO3) as a function of temperature (25–250 °C), Chem.Geol. 265 (1/2), 3–12.
  • BOTERO, A. E. C., TOREM, M. L., MESQUITA LMS., 2008, Surface chemistry fundamentals of biosorption of rhodococcus opacus and its effect in calcite and magnesite flotation, Minerals Engineering, 21(1): 83–92.
  • BRANDO., P.R.G. POLING, G. W.,1982, Anionic flotation of magnesite, Can. Metall. Q, 3, 211–220.
  • ELMAHDY, A. M., EL-MIDANY, A. A., ABDEL-KHALEK, N .A., 2007, Application of amphoteric collector for dolomite separationby statistically designed experiments, Miner. Process. Extr. Metall, 116, 72–76.
  • FLOREK, I.,1995, The effects of radiation pretreatment on the floatability of magnesite and siderite, Minerals, 8, 329–331.
  • FU, Y., ZHU, Z.; YAO, J., HAN, L., YIN, W., YANG, B., 2018, Improved depression of talc in chalcopyrite flotation using a novel depression combination of calcium ions and sodium lignosulfonate, Colloids and Surfaces A, 558, 88–94.
  • GENCE, N., OZBAY, N., 2006, pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions, Appl. Surf. Sci, 252, 8057–8061.
  • GENCE, N., 2006, Wetting behavior of magnesite and dolomite surfaces, Applied Surface Science, 252, 3744–3750.
  • KANGAL, O., 2005, Flotation behavior of huntite (Mg3Ca(CO3)4) with anionic collectors, Miner. Proces, 75, 31–39.
  • KARAOGLU, H., YANMIS, D., GURKOK, S., 2016, Magnesite enrichment with pseudomonas oryzihabitans isolated from magnesite ore, Geomicrobiol, 33, 46–51.
  • LIU, Y., LIU, Q., 2004, Flotation separation of carbonate from sulfide minerals, I: Flotation of single minerals and mineral mixtures, Miner. Eng, 17, 855–863.
  • LIU, Y., LIU, Q., 2004, Flotation separation of carbonate from sulfide minerals, II: Mechanisms of flotation depression of sulfide minerals by thioglycollic acid and citric acid, Miner. Eng. 17, 865–878.
  • LUO, X., WANG, Y., WEN, S., MA, M., SUN, C., YIN, W., MA, Y., 2016, Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores, International Journal of Mineral Processing, 152, 1–6.
  • LUO, N., WEI, D., SHEN, Y., HAN C., ZHANG, C., 2017, Elimination of the Adverse Effect of Calcium Ion on the Flotation Separation of Magnesite from Dolomite, Minerals, 150, 1–11.
  • LUO, X., YIN, W., WANG, Y., SUN, C., MA, Y., LIU, J., 2016, Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate ascollector, Cent. South Univ. 23, 529–534.
  • MAROUF, R., MAROUF-KHELIFA, K., SCHOTT, J., KHELIFA, A., 2009, Zeta potential study of thermally treated dolomite samples in electrolyte solutions, Microporous Mesoporous Mater, 122, 99–104.
  • MARTA, M., HÉIÉNE, B., GUILLAUME, F., FRANCOIS, G., 2011, In-situ monitoring of the formation of carbon compounds during the dissolution of iron (II) carbonate (siderite), Chem. Geol. 290 (3/4), 145–155.
  • RAO, K. H., ANTTI, B.M., FORSSBERG, E., 1990, Mechanism of oleate interaction on salt-type minerals, part II. Adsorption and electrokinetic studies of apatite in the presence of sodium oleate and sodium metasilicate, Miner. Process, 28, 59–79.
  • WONYEN, D. G.., KROMAH, V., GIBSON, B., NAH, S., CHELGANI, S. C., 2018, A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite), Minerals, 8, 354.
  • YAO, J., YIN, W., GONG, E., 2016, Depressing effect of fine hydrophilic particles on magnesite reverse flotation, Int. J. Miner. Process, 149, 84–93.
  • YIN, W., YANG, B., FU, Y., CHU, F., YAO, J., CAO, S., ZHU Z., 2019, Effect of calcium hypochlorite on flotation separation of covellite and pyrite, Powder Technology, 343, 578–585.
  • ZHANG, H., LIU, W., CONG HAN, C., WEI, D., 2018, Intensify dodecylamine adsorption on magnesite and dolomite surfaces by monohydric alcohols, Applied Surface Science, 444, 729–738.
  • ZHU, Y., LUO, B., SUN, C., LI, Y., HAN, Y., 2015, Influence of bromine modification on collecting property of lauric acid. Miner. Eng, 79, 24–30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74c8992d-9f8a-45b3-88ca-a6f2b4b646e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.