PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

1,2-Dihydroksybenzen. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
1,2-Dihydroxybenzene Documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
PL
1,2-Dihydroksybenzen (pirokatechol) jest pochodną fenolu, która w temperaturze pokojowej występuje w postacibiałego krystalicznego ciała stałego, ciemniejącego pod wpływem światła i powietrza. 1,2-Dihydroksybenzen to polifenol naturalnie występujący w wielu roślinach. Obecnie jest wykorzystywany jako przeciwutleniacz przy produkcji gumy i olejów smarowych, inhibitor polimeryzacji, a także w przemyśle chemicznym, farbiarskim i naftowym oraz w fotografii jako wywoływacz. W warunkach narażenia zawodowego kontakt z 1,2-dihydroksybenzenem może nastąpić przez układ oddechowy i kontakt dermalny podczas produkcji, pakowania lub użytkowania produktów końcowych. Działanie ogólnoustrojowe 1,2-dihydroksybenzenu jest podobne do działania fenolu. Substancja ta powoduje podrażnienie oczu, skóry, układu oddechowego, łzawienie, drgawki, podwyższone ciśnienie krwi. Bezpośredni kontakt może powodować uczulenie i stany zapalne skóry. 1,2-Dihydroksybenzen łatwo się wchłania z przewodu pokarmowego, przez nienaruszoną skórę i drogi oddechowe. Substancja jest w organizmie częściowo utleniana do benzochinonu, który łatwo wiąże się z białkami, a częściowo sprzęga się z kwasami: glukuronowym, siarkowym i innymi. Po narażeniu inhalacyjnym 1,2-dihydroksybenzen nie kumuluje się w organizmie, tylko szybko jest wydalany z moczem w postaci pochodnych, takich jak: glukuronid 1,2-dihydroksybenzenu, siarczan 1,2-dihydroksybenzenu i siarczan o metoksyfenylu. Za skutek krytyczny działania 1,2-dihydroksybenzenu można uznać działanie układowe objawiające się przerostem podśluzówki żołądka gruczołowego szczura, a także znaczącym zwiększeniem poziomu gastryny we krwi. Na podstawie tych założeń wyliczona wartość NDS wynosi 10 mg/m3, zaś ze względu na działanie drażniące na skórę i oczy wartość NDSCh przyjęto na poziomie 20 mg/m3. Ze względu na działanie rakotwórcze oraz wchłanianie przez skórę zaproponowano oznakowanie związku jako „Carc. 1B” i „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,2-Dihydroxybenzene (pyrocatechol) is a phenol derivative, which at room temperature occurs in the form of a white crystalline solid, darkening under the influence of light and air. 1,2-Dihydroxybenzene is a polyphenol naturally found in many plants. At present, it is used as an antioxidant in the production of rubber and lubricating oils, a polymerization inhibitor, as well as in the chemical, dyeing and petroleum industries, or in photography as a developer. In case of occupational exposure, contact with 1,2-dihydroxybenzene may occur during production, packaging or use of final products through respiratory and dermal contact. The systemic effect of 1,2-dihydroxybenzene is similar to that of phenol, and so it causes irritation of the eyes, skin, respiratory system, lacrimation, convulsions, increased blood pressure. Direct contact may cause sensitization and inflammation of the skin. 1,2-Dihydroxybenzene is readily absorbed from the digestive tract as well as through intact skin and respiratory tract. The substance in the body is partially oxidized to benzoquinone, which is easily bound to proteins, and part is conjugated with glucuronic, sulfuric and other acids. After inhalation exposure, 1,2-dihydroxybenzene does not accumulate in the body, but is quickly excreted in the urine in the form of derivatives such as: 1,2-dihydroxybenzene glucuronide, 1,2-dihydroxybenzene sulfate and methoxyphenyl sulfate. For the critical effect of the action 1,2-dihydroxybenzene can be considered systemic, manifested by hypertrophy of the submucosa of the glandular stomach of the rat, as well as a significant increase in the level of gastrin in the blood. Based on such assumptions, the calculated MAC value is 10 mg/m3, and due to the irritating effect on the skin and eyes, the MAC-STEL value was set at 20 mg/m3. Due to its carcinogenic effect and absorption through the skin, it was proposed to label the compound as “Carc. 1B” and “skin”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Rocznik
Strony
13--49
Opis fizyczny
Bibliogr. 120 poz., rys., tab.
Twórcy
  • Uniwersytet Medyczny w Łodzi, Katedra i Zakład Toksykologii 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi, Katedra i Zakład Toksykologii 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
Bibliografia
  • 1. Andersen K.E., Carlsen L. (1988). Pyrocatechol contact allergy from a permanent cream dye for eyelashes and eyebrows. Contact Dermatitis 18(5), 306-307.
  • 2. Ando M., Nishida H., Nishino Y. i in. (2010). Carbonyl side- -chain of catechol compounds is a key structure for the suppression of copper-associated oxidative DNA damage in vitro. Toxicol. Lett. 199(3), 213-217.
  • 3. Aw T.C., Boyland E. (1981). Depigmentation of hair in mice by chemicals. IRCS Med. Sci. 9, 29-30 [cyt. za: Final report... 1986].
  • 4. Baer H., Watkins R.C., Kurtz A.P. i in. (1967a). Delayed contact sensitivity to catechols: II. Cutaneous toxicity of catechols chemically related to the active principles of poison ivy. J. Immunol. 99(2), 365–369.
  • 5. Baer H., Watkins R.C., Kurtz A.P. i in. (1967b). Delayed contact sensitivity to catechols: III. The relationship of side-chain length to sensitizing potency of catechols chemically related to the active principles of poison ivy. J. Immunol. 99(2), 370-375.
  • 6. Bhat R.V., Subrahmanyam V.V., Sadler A. i in. (1988). Bioactivation of catechol in rat and human bone marrow cells. Toxicol. Appl. Pharmacol. 94(2), 297-304
  • 7. Bleehen S.S., Pathak M.A., Hori Y. i in. (1968). Depigmentation of skin with 4-isopropylcatechol, mercaptoamines, and other compounds. J. Invest. Dermatol. 50(2), 103-117.
  • 8. Bukowska B., Kowalska S. (2004). Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes. Toxicol. Lett. 152(1), 73–84.
  • 9. Canada (2008). The Ministers of the Environment and of Health. Screening assessment for 1,2-benzenediol (120-80-9), https://www.ec.gc.ca/ese-ees/04FDC10E-0C72-41B2-8040- 91B7BB43AE38/batch1_120-80-9_en.pdf [dostęp: czerwiec 2022].
  • 10. Carmella S.G., La Voie E.J., Hecht S.S. (1982). Quantitative analysis of catechol and 4-methylcatechol in human urine. Food Chem. Toxicol. 20(5), 587-590.
  • 11. Chapman D.E., Namkung M.J., Juchau M.R. (1994). Benzene and benzene metabolites as embryotoxic agents: effects on cultured rat embryos. Toxicol. Appl. Pharmacol. 128, 129-137.
  • 12. ChemicalBook (2022). https://www.chemicalbook.com/ProductChemicalPropertiesCB7300091_EN.htm [dostęp: listopad 2023].
  • 13. Ciranni R., Barale R., Marrazzini A. i in. (1988a). Benzene and the genotoxicity of its metabolites: I. Transplacental activity in mouse fetuses and in their dams. Mutat. Res. 208, 61-67.
  • 14. Ciranni R., Barale R., Ghelardini G. i in. (1988b). Benzene and the genotoxicity of its metabolites: II. The effect of the route of administration on the micronuclei and bone marrow depression in mouse bone marrow cells. Mutat. Res. 209, 23-2
  • 15. do Céu Silva M., Gaspar J., Silva I.D. i in. (2003). Induction of chromosomal aberrations by phenolic compounds: possible role of reactive oxygen species. Mutat. Res. 540(1), 29-42.
  • 16. Dr. Duke’s Phytochemical and Ethnobotanical Databases (2022). Plants with a chosen chemical. Catechol. US Department of Agriculture, Agricultural Research Service, Washington, DC. https://phytochem.nal.usda.gov/phytochem/chemicals/show/51202 [dostęp: listopad 2023].
  • 17. EC, European Commission (2021). Opinion on priority chemicals for new or revised occupational exposure limit values under EU OSH legislation. The Advisory Committee on Safety and Health at Work. Doc. 006-21. 26/05/2021.
  • 18. ECHA, European Chemicals Agency (2016a). Committee for Risk Assessment. Background document to the Opinion proposing harmonised classification and labelling at EU level of 1,2-dihydroxybenzene; pyrocatechol. CLH-O-0000001412- 86-122/F.
  • 19. ECHA, European Chemicals Agency (2016b). Committee for Risk Assessment. Opinion proposing harmonised classification and labelling at EU level of 1,2-dihydroxybenzene; pyrocatechol. CLH-O-0000001412-86-122/F.
  • 20. ECHA, European Chemicals Agency (2022). https://echa. europa.eu/pl/information-on-chemicals [dostęp: czerwiec 2022].
  • 21. Erexson G.L., Wilmer J.L., Kligerman A.D. (1985). Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Res. 45, 2471-2477.
  • 22. Fabiani R., De Bartolomeo A., Rosignoli P. i in. (2001). Influence of culture conditions in the DNA-damaging effect of benzene and its metabolites in human peripheral blood mononuclear cells. Environ. Mol. Mutagen. 37, 1-6.
  • 23. Fahrig R. (1984). Genetic mode of action of cocarcinogens and tumor promoters in yeast and mice. Mol. Gen. Genet. 194, 7–14.
  • 24. Fiege H., Voges H.W., Hamamoto T. i in. (2000). Phenol derivatives. Ullmann’s Encyclopedia of industrial chemistry. 7th ed. (1999-2014). John Wiley & Sons, New York, NY.
  • 25. Final report on the safety assessment of hydroquinone and pyrocatechol (1986). J. Am. Coll. Toxicol. 5(3), 123–165.
  • 26. Flickinger C.W. (1976). The benzenediols: catechol, resorcinol and hydroquinone: a review of the industrial toxicology and current industrial exposure limits. Am. Ind. Hyg. Assoc. J. 37(10), 596-606.
  • 27. Fukushima S., Hagiwara A., Hirose M. i in. (1991). Modifying effects of various chemicals on preneoplastic and neoplastic lesion development in a wide-spectrum organ carcinogenesis model using F344 rats. Jpn. J. Cancer Res. 82, 642-649
  • 28. Furihata C., Hatta A., Matsushima T. (1989). Inductions of ornithine decarboxylase and replicative DNA synthesis but not DNA single strand scission or unscheduled DNA synthesis in the pyloric mucosa of rat stomach by catechol. Jpn. J. Cancer Res. 80, 1052-1057.
  • 29. Gad-el-Karim M.M., Ramanujam V.M.S, Ahmed A.E. i in. (1985). Benzene myeloclastogenicity: a function of its metabolism. Am. J. Ind. Med. 7, 475–484.
  • 30. Garton G.A., Williams R.T. (1948). Studies in detoxication: 17. The fate of catechol in the rabbit and the characterization of catechol monoglucuronide. Biochem. J. 43(2), 206-211 [cyt. za: Patty’s Toxicology 2001].
  • 31. Gellin G.A., Maibach H.I., Misiaszek M.H. i in. (1979). Detection of environmental depigmenting substances. Contact Dermatitis 5(4), 201–213.
  • 32. GESTIS ILV (2022). https://limitvalue.ifa.dguv.de/WebForm_ ueliste2.aspx [dostęp: czerwiec 2022].
  • 33. GESTIS Substance Database (2022). Pyrocatechol, https:// gestis-database.dguv.de/data?name=010700 [dostęp: czerwiec 2022].
  • 34. Gosselin R.E., Smith R.P., Hodge H.C. i in. (1984). Clinical toxicology of commercial products. 5th ed. Williams & Wilkins, Baltimore. II-190
  • 35. Greenlee W.F., Gross E.A., Irons R.D. (1981a). Relationship between benzene toxicity and the disposition of 14C-labelled benzene metabolites in the rat. Chem. Biol. Interact. 33, 285-299.
  • 36. Greenlee W.F., Sun J.D., Bus J.S. (1981b). A proposed mechanism of benzene toxicity: formation of reactive intermediates from polyphenol metabolites. Toxicol. Appl. Pharmacol. 59, 187-195.
  • 37. Hagiwara A., Kokubo Y., Takesada Y. i in. (1996). Inhibitory effects of phenolic compounds on development of naturally occurring preneoplastic hepatocytic foci in long-term feeding studies using male F344 rats. Teratog. Carcinog. Mutagen. 16, 317–325
  • 38. Hagiwara A., Takesada Y., Tanaka H. i in. (2001). Dose-dependent induction of glandular stomach preneoplastic and neoplastic lesions in male F344 rats treated with catechol chronically. Toxicol. Pathol. 29(2), 180-186.
  • 39. Handbook of cosmetic and personal care additives (2002). [Red.] M. Ash, I. Ash. 2nd ed. Synapse Information Resources, Endicott, NY. 2, 1456.
  • 40. Hasegawa R., Furukawa F., Toyoda K. i in. (1990). Inhibitory effects of antioxidants on N-bis(2-hydroxypropyl)nitrosamine-induced lung carcinogenesis in rats. Jpn. J. Cancer Res. 81, 871-877.
  • 41. Hasegawa R., Tiwawech D., Hirose M. i in. (1992). Suppression of diethylnitrosamine-initiated preneoplastic foci development in the rat liver by combined administration of four antioxidants at low doses. Jpn. J. Cancer Res. 83, 431-437.
  • 42. HCN, Health Council of the Netherlands (2011). 1,2-Catechol (pyrocatechol): evaluation of the carcinogenicity and genotoxicity. The Hague: Health Council of the Netherlands, publication no. 2011/05OSH.
  • 43. Hecht S.S., Thorne R.L., Maronpot R.R. i in. (1975). A study of tobacco carcinogenesis: XIII. Tumor-promoting subfractions of the weakly acidic fraction. J. Natl. Cancer Inst. 55, 1329-1336.
  • 44. Hellmér L., Bolcsfoldi G. (1992). An evaluation of the E. coli K-12 uvrB/recA DNA repair host mediated assay: I. In vitro sensitivity of the bacteria to 61 compounds. Mutat. Res. 272(2), 145-160.
  • 45. Hirakawa K., Oikawa S., Hiraku Y. i in. (2002). Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. Chem. Res. Toxicol. 15(1), 76-82
  • 46. Hirosawa I., Asaeda G., Arizono H. i in. (1976). Effects of catechol on human subjects: a field survey. Int. Arch. Occup. Environ. Health 37, 107-114.
  • 47. Hirose M., Inoue T., Asamoto M. i in. (1986). Comparison of the effects of 13 phenolic compounds in induction of proliferative lesions of the forestomach and increase in the labelling indices of the glandular stomach and urinary bladder epithelium of Syrian golden hamsters. Carcinogenesis 7(8), 1285-1289.
  • 48. Hirose M., Kurata Y., Tsuda H. i in. (1987). Catechol strongly enhances rat stomach carcinogenesis: a possible new environmental stomach carcinogen. Jpn. J. Cancer Res. 78, 1144- 1149.
  • 49. Hirose M., Fukushima S., Shirai T. i in. (1990). Stomach carcinogenicity of caffeic acid, sesamol and catechol in rats and mice. Jpn. J. Cancer Res. 81, 207-212.
  • 50. Hirose M., Wada S., Yamaguchi S. i in. (1992). Reversibility of catechol-induced rat glandular stomach lesions. Cancer Res. 52, 787-790.
  • 51. Hirose M., Fukushima S., Tanaka H. i in. (1993). Carcinogenicity of Catechol in F344 rats and B6C3F1 mice. Carcinogenesis 14(3), 525-529.
  • 52. Hirose M., Hakoi K., Takahashi S. i in. (1999). Sequential morphological and biological changes in the glandular stomach induced by oral administration of catechol to male F344 rats. Toxicol. Pathol. 27(4), 448-455.
  • 53. HSDB, Hazardous Substances Data Bank (2022). US National Library of Medicine. https://healthdata.gov/dataset/hazardous-substances-data-bank-hsdb [dostęp: czerwiec 2022].
  • 54. Hwang K.K., Sonko O., Dansie D.R. i in. (1982). Studies on the deposition and distribution of catechol from whole cigarette smoke in BC3F1/Cum mice. Toxicol. Appl. Pharmacol. 64(3), 405-414.
  • 55. IARC, International Agency for Research on Cancer (1993). Occupational exposures of hairdressers and barbers and personal use of hair colourants; some hair dyes, cosmetic colourants, industrial dyestuffs and aromatic amines. IARC Monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, France. 57, 43-118.
  • 56. IARC, International Agency for Research on Cancer (1999). Catechol. Monographs on the evaluation of carcinogenic risks to humans, re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. WHO: Lyon, France. 71, 433-451
  • 57. Ito N., Imaida K., Hirose M. i in. (1998). Medium-term bioassays for carcinogenicity of chemical mixtures. Environ. Health Perspect. 106(6), 1331-1336
  • 58. Kajimura T., Tojo H., Kudo G. i in. (1992). Effect of the new quinolone antibacterial agent levofloxacin on multiple organ carcinogenesis in initiated with wide-spectrum carcinogens in rats. Arzneim.-Forsch. 43(3A), 390–395.
  • 59. Kampa M., Hatzoglou A., Notas G. i in. (2000). Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr. Cancer 37(2), 223-233.
  • 60. Kavlock R.J. (1990). Structure-activity relationships in the developmental toxicity of substituted phenols: in vivo effects. Teratology 41(1), 43–59.
  • 61. Kirk-Othmer Encyclopedia of chemical technology (1981). 3rd ed., vol. 1-26. John Wiley and Sons, New York, NY. 1978-1984, p. V13: 39.
  • 62. Kobayashi K., Shimizu N., Tsukamoto T. i in. (1997). Dosedependant promoting effects of catechol on glandular stomach carcinogenesis in BALB/c mice initiated with N-methyl-N-nitrosourea. Jpn. J. Cancer Res. 88, 1143-1148.
  • 63. Kobayashi K., Inada K.-I., Furihata C. i in. (1999). Effects of low dose catechol on glandular stomach carcinogenesis in BALB/c mice initiated with N-methyl-N-nitrosourea. Cancer Lett. 139, 167-172.
  • 64. Kurata Y., Fukushima S., Hasegawa R. i in. (1990). Structure-activity relations in promotion of rat urinary bladder carcinogenesis by phenolic antioxidants. Jpn. J. Cancer Res. 81, 754-759.
  • 65. La Voie E.J., Shigematsu A., Mu B. i in. (1985). The effects of catechol on the urinary bladder of rats treated with N-butyl-N-(4-hydroxybutyl)nitrosamine. Jpn. J. Cancer Res. 76, 266-271.
  • 66. Lee E.W., Johnson J.T., Garner C.D. (1989). Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells. J. Toxicol. Environ. Health. 26(3), 277-291.
  • 67. Lehman A.J., Fitzhugh O.G., Nelson A.A. i in. (1951). The pharmacological evaluation of antioxidants. Adv. Food Res. 3, 197–208
  • 68. Lewis R.J. (1996). Sax’s dangerous properties of industrial materials. 9th ed. Vol. 1. Edited and published by: Van Nostrand Reinhold. New York, NY [cyt. za: ECHA 2016].
  • 69. Lundberg P. (1992). Consensus report for catechol. [W:] Scientific basis for Swedish occupational standards XIII. National Institute of Occupational Health, Solna, Sweden. Arbete och Hälsa 47 [cyt. za: Canada 2008].
  • 70. Marrazzini A., Chelotti, L., Barrai I. i in. (1994). In vivo genotoxic interactions among three phenolic benzene metabolites. Mutat. Res. 341, 29-46.
  • 71. Martínez A., Urios A., Blanco M. (2000). Mutagenicity of 80 chemicals in Escherichia coli tester strains IC203, deficient in OxyR, and its oxyR+ parent WP2uvrA/pKM101: detection of 31 oxidative mutagens. Mutat. Res. 467, 41-53.
  • 72. Maruyama H., Amanuma T., Nakae D. i in. (1991). Effects of catechol and its analogs on pancreatic carcinogenesis initiated by N-nitrosobis(2-oxopropyl)amine in Syrian hamsters. Carcinogenesis 12(7), 1331-1334.
  • 73. Maruyama H., Amanuma T., Tsutsumi M. i in. (1994). Inhibition by catechol and di(2-ethylhexyl) phthalate of pancreatic carcinogenesis after initiation with N-nitrosobis(2-hydroxypropyl) amine in Syrian hamsters. Carcinogenesis 15(6), 1193-1196.
  • 74. McGregor D.B., Riach C.G., Brown A. i in. (1988). Reactivity of catecholamines and related substances in the mouse lymphoma L5178Y cell assay for mutagens. Environ. Mol. Mutagen. 11, 523-544.
  • 75. Melikian A.A., Jordan K.G., Braley J. i in. (1989). Effects of catechol on the induction of tumors in mouse skin by 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrenes. Carcinogenesis 10(10), 1897-1900.
  • 76. Melikian A.A., Jordan K.G., Braley J. i in. (1989). Effects of catechol on the induction of tumors in mouse skin by 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrenes. Carcinogenesis 10(10), 1897-1900.
  • 77. Morelli R., Piancastelli E., Lanzarini M. i in. (1989). Occupational contact dermatitis from pyrocatechol. Contact Dermatitis 21(3), 201–202.
  • 78. Morimoto K. (1983). Induction of sister chromatid exchanges and cell division delays in human lymphocytes by microsomal activation of benzene. Cancer Res. 43, 1330-1334.
  • 79. Morimoto K., Wolff S. (1980). Increase of sister chromatid exchanges and perturbations of cell division kinetics in human lymphocytes by benzene metabolites. Cancer Res. 4, 1189-1193.
  • 80. Nakamura S. (1981). The effects of oral administration of catechol in mice. Osaka-furitsu Koshu Eisei Kenkyusho Kenkyu Hokoku, Rodo Eisei Hen 19, 33–37 [cyt. za: ECHA 2016].
  • 81. NCBI, National Center for Biotechnology Information (2022). PubChem Annotation Record for CATECHOL, Source: Hazardous Substances Data Bank (HSDB). https://pubchem. ncbi.nlm.nih.gov /source/hsdb/1436#section=Interactions- -(Complete) [dostęp: czerwiec 2022].
  • 82. NIOSH, National Institute for Occupational Safety and Health (2017). NOES. National Occupational Exposure Survey conducted from 1981-1983. Estimated numbers of employees potentially exposed to specific agents by 2-digit standard industrial classification (SIC). TSCA Inventory Update Reporting, https://web.archive.org/web/20111026173511/http://www. cdc.gov/noes/noes1/m1763sic.html [dostęp: czerwiec 2022].
  • 83. NIOSH, National Institute for Occupational Safety and Health (2019). NIOSH skin notation profile: catechol. By N.L. Hudson. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Cincinnati, OH. DHHS (NIOSH) Publication No. 2019-118, https://doi.org/10.26616/ NIOSHPUB2019118.
  • 84. Ohgaki H., Szentirmay Z., Take M. i in. (1989). Effects of 4-week treatment with gastric carcinogens and enhancing agents on proliferation of gastric mucosa cells in rats. Cancer Lett. 46(2), 117-122.
  • 85. Oikawa S., Hirosawa I., Hirakawa K. i in. (2001). Site specificity and mechanism of oxidative DNA damage induced by carcinogenic catechol. Carcinogenesis 22(8), 1239-1245.
  • 86. Pang S. (1997). Amended final report on the safety assessment of pyrocatechol. Int. J. Tox. 16(1), 11-58.
  • 87. Patty’s Toxicology (2001). [Red.] E. Bingham, B. Cohrssen, C.H. Powell. Vol. 1-9. 5th ed. John Wiley & Sons, New York, NY. 383–551.
  • 88. Pellack-Walker P., Walker J.K., Evans H.H. i in. (1985). Relationship between the oxidation potential of benzene metabolites and their inhibitory effect on DNA synthesis in L5178YS cells. Mol. Pharmacol. 28, 560–566.
  • 89. PubChem (2022). 2-Hydroxyphenolate. Compound summary, https://pubchem.ncbi.nlm.nih.gov/compound/Catecholate_1 [dostęp: czerwiec 2022].
  • 90. Rozporządzenie Komisji (UE) 2018/1480 z dnia 4 października 2018 r. zmieniające, w celu dostosowania do postępu naukowo-technicznego, rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 w sprawie klasyfikacji,oznakowania i pakowania substancji i mieszanin, oraz w sprawie sprostowania rozporządzenia Komisji (UE) 2017/776. Dz. Urz. UE L 251/1.
  • 91. Rozporządzenie Komisji (UE) 2020/2096 z dnia 15 grudnia 2020 r. zmieniające załącznik XVII do rozporządzenia (WE) nr 1907/2006 Parlamentu Europejskiego i Rady w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów (REACH) w odniesieniu do substancji rakotwórczych, mutagennych lub działających szkodliwie na rozrodczość (CMR), wyrobów objętych rozporządzeniem Parlamentu Europejskiego i Rady (UE) 2017/745, trwałych zanieczyszczeń organicznych, niektórych substancji lub mieszanin ciekłych, nonylfenolu i metod badania barwników azowych. Dz. Urz. UE L 425/1
  • 92. Rozporządzenie Ministra Rodziny, Pracy i Polityki Społecznej z dnia 12 czerwca 2018 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy. DzU 2018, poz. 1286.
  • 93. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16 grudnia 2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/648/EWG i 1999/45/WE oraz zmieniające rozporządzenie WE nr 1907/2006. Dz. Urz. UE L 353 z 31.12.2008 r., 1-1355 ze zm.
  • 94. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1223/2009 z dnia 30 listopada 2009 r. dotyczące produktów kosmetycznych (załącznik II). Dz. Urz. UE L 342/59.
  • 95. Sapota A., Ligocka D. (2001). Rezorcynol. Dokumentacja proponowanych wartości dopuszczalnych poziomów narażenia zawodowego. Podst. Met. Oceny Srodow. Pr. 1(27), 127-145.
  • 96. Shibata M.A., Hirose M., Yamada M. i in. (1990a). Epithelial cell proliferation in rat forestomach and glandular stomach mucosa induced by catechol and analogous dihydroxybenzenes. Carcinogenesis 11(6), 997-1000.
  • 97. Shibata M.A., Yamada M., Hirose M. i in. (1990b). Early proliferative responses of forestomach and glandular stomach of rats treated with five different phenolic antioxidants. Carcinogenesis 11(3), 425-429.
  • 98. Sitarek K. (2008). Hydrochinon. Dokumentacja dopuszczalnych wielkości narażenia zawodowego. Podst. Met. Oceny Srodow. Pr. 2(56), 107-128.
  • 99. Smith M.T., Yager J.W., Steinmetz K.L. i in. (1989). Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ. Health Perspect. 82, 23-29.
  • 100. Solveig Walles S.A. (1992). Mechanisms of DNA damage induced in rat hepatocytes by quinones. Cancer Lett. 63, 47–52.
  • 101. Stich H.F., Rosin M.P., Wu C.H. i in. (1981). The action of transition metals on the genotoxicity of simple phenols, phenolic acids and cinnamic acids. Cancer Lett. 14(3), 251-260.
  • 102. Study Report n°16948 (1973). Phenol (4030 RP), Hydroquinone (4373 RP) et Pyrocatechine (30488 RP): toxicité aiguë chez le rat par voie percutanée de ces produits en solutions aqueuses [cyt. za: ECHA 2016]
  • 103. Study Report n°FSR-IPL 060904-01 (2007). Bacterial mutagenicity test on Salmonella typhimurium according to B.N. Ames’s technique with liver and kidney S9 fraction: screening assay performed in micromethod using TA1537, TA98, TA100 and TA102 without repetition with the compound catechol [cyt. za: ECHA 2016].
  • 104. Study Report n°18255 (2008). In vivo comet assay in the rat study performed on stomach and duodenum with the copound catechol (two treatments, one sampling time). Study report n° 7961 03 1983. Rapport d’expérimentation du potentiel mutagène du produit RP-2/83 (Test d’Ames) [cyt. za: ECHA 2016].
  • 105. Subrahmanyam V.V., Kolachana P., Smith M.T. (1991). Metabolism of hydroquinone by human myeloperoxidase: mechanisms of stimulation by other phenolic compounds. Arch. Biochem. Biophys. 286(1), 76-84.
  • 106. SWA, Safe Work Australia (2019). Catechol (120-80-9) DRAFT, https://engage.swa.gov.au/50013 /widgets/263308/ documents/117897 [dostęp: czerwiec 2022].
  • 107. Tammaro A., Cortesi G., Narcisi A. i in. (2013). Occupational contact dermatitis from pyrocatechol in parquet flooring. Occup. Environ. Med. 70, 71.
  • 108. Tanaka H., Hirose M., Hagiwara A. i in. (1995). Rat strain differences in catechol carcinogenicity to the stomach. Food Chem. Toxicol. 33(2), 93-98.
  • 109. Tatematsu M., Ichinose M., Tsukada S. i in. (1993). DNA methylation of the pepsinogen 1 gene during rat glandular stomach carcinogenesis induced by N-methyl-N´-nitro-N-nitrosoguanidine or catechol. Carcinogenesis 14(7), 1415-141
  • 110. The Merck Index: an encyclopedia of chemicals, drugs, and biologicals (2013). [Red.] M.J. O’Neil. Royal Society of Chemistry, Cambridge, UK
  • 111. Tsutsui T., Hayashi N., Maizumi H. i in. (1997). Benzene-, catechol-, hydroquinoneand phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat. Res. 373, 113-123.
  • 112. Tunek A., Högstedt B., Olofsson T. (1982). Mechanism of benzene toxicity. Effects of benzene and benzene metabolites on bone marrow cellularity, number of granulopoietic stem cells and frequency of micronuclei in mice. Chem. Biol. Interact. 39(2), 129-138.
  • 113. US EPA, U.S. Environmental Protection Agency (2006). Inventory Update Reporting (IUR). Non-confidential IUR records by chemical, including manufacturing, processing and use information. Washington, DC. https://cfpub.epa.gov/iursearch/index.cfm [dostęp: czerwiec 2022].
  • 114. Van Duuren B.L., Katz C., Goldschmidt B.M. (1973). Cocarcinogenic agents in tobacco carcinogenesis. J. Natl. Cancer Inst. 51(2), 703-705.
  • 115. Van Duuren B.L., Goldschmidt B.M. (1976). Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis. J. Natl. Cancer Inst. 56(6), 1237-1242.
  • 116. Van Duuren B.L., Melchionne S., Seidman I. (1986). Phorbol myristate acetate and catechol as skin cocarcinogens in SENCAR mice. Environ. Health Perspect. 68, 33-38.
  • 117. Wada S., Hirose M., Shichino Y. i in. (1998). Effects of catechol, sodium chloride and ethanol either alone or in combination on gastric carcinogenesis in rats pretreated with MNNG. Cancer Lett. 123, 127-134
  • 118. Wangenheim J., Bolcsfoldi G. (1988). Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis 3(3), 193-205.
  • 119. Yager J.W., Eastmond D.A., Robertson M.L. i in. (1990). Characterization of micronuclei induced in human lymphocytes by benzene metabolites. Cancer Res. 50, 393-399.
  • 120. Yamafuji K., Murakami H. (1968). Antitumour potency of lignin and pyrocatechol and their action on deoxyribonucleic acid. Enzymologia 35(3), 139-153 [cyt. za: Final report... 1986].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74c66df2-0eb6-4761-adba-8cf24220bc4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.