Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of experimental investigations of heat transfer and a friction factor in an air channel of the minichannel heat exchanger are presented. The main aim of the analysis was to examine an influence of geometrical parameters of the fin shape with two geometries on heat transfer and flow characteristics of the air channel. The test rig was designed to monitor the parameters of the airflow during cooling by the minichannel heat exchanger. The analysis was conducted with the airflow in the range of 1–5 m/s. The temperature of the evaporation in a refrigeration system was set at 288.15 K. The energy balance of the refrigeration system was carried out. A numerical model describes the airflow through a part of the heat exchanger. Numerical simulations were validated with the experimental data. Numerical methods were used to evaluate the performance of the system and possibilities to improve the fin geometry. The characteristics of the friction factor (a measure of the pressure loss in the airflow) and the Colburn j-factor (heat transfer performance) were calculated. For the maximal velocity of the airflow, the Colburn factor was equal to 0.048 and the evaporator capacity equaled 1914 W.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
261--279
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Lodz University of Technology, Institute of Turbomachinery, Wólczańska 217/221, 93-005 Łódź, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Wólczańska 217/221, 93-005 Łódź, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Wólczańska 217/221, 93-005 Łódź, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Wólczańska 217/221, 93-005 Łódź, Poland
autor
- Lodz University of Technology, Institute of Turbomachinery, Wólczańska 217/221, 93-005 Łódź, Poland
Bibliografia
- [1] Islam S., Islam M.S., Abedin M.Z.: Review on heat transfer enhancement by louvered fin. Int. J. Eng. Mater. Manufact. 6(2021), 60–80.
- [2] Muszynski T., Kozieł S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62.
- [3] Dodiya K., Bhatt N., Lai F.: Louvered fin compact heat exchanger: a comprehensive review. Int. J. Amb. Energ. (2020).
- [4] Wan R., Wang Y., Kavtaradze R., Ji H., He X.: Research on the air-side thermal hydraulic performance of louvered fin and flat tube heat exchangers under low-pressure environment. Exp. Heat Transfer 33(2020), 1, 81–99.
- [5] Gunnasegaran P., Shuaib N.H., Abdul Jalal M.F.: The effect of geometrical parameters on heat transfer characteristics of compact heat exchanger with louvered fins. ISRN Thermodyn. (2012), 1–10.
- [6] Djamal H.D., Woon Q.Y., Suzairin M.S., Hisham Amirnordin S.: Effects of geometrical parameters to the performance of louvered fin heat exchangers. Appl. Mech. Mater. 773-774(2015), 398–402.
- [7] Amirnordin S.H., Didane H.D., Norani Mansor M., Khalid A, Suzairin M.S., Raghavan V.R.: Pressure drop and heat transfer characteristics of louvered fin heat exchangers. Appl. Mech. Mater. 465-466(2014), 500–504.
- [8] Chan Kang H., Jun G.W.: Heat transfer and flow resistance characteristics of louver fin geometry for automobile applications. J. Heat Transfer. 133(2011), 1–6.
- [9] Okbaz A., Olcay A.B., Cellek M.S., Pinarbasi A.: Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches. EPJ Web Conf. 143(2017), 02084.
- [10] Park J.S., Kim J., Lee K.S.: Thermal and drainage performance of a louvered fin heat exchanger according to heat exchanger inclination angle under frosting and defrosting conditions. Int. J. Heat Mass Transf. 108(2017), 1335–1339.
- [11] Liu X., Chen H., Wang X., and Kefayati G.: Study on surface condensate water removal and heat transfer performance of a minichannel heat exchanger. Energies 13(2020), 5, 1065
- [12] Saleem A., Kim M.H.: CFD analysis on the air-side thermal-hydraulic performance of multi-louvered fin heat exchangers at low Reynolds numbers. Energies 10(2017), 6, 1–24.
- [13] Bohdal T., Charun H., Sikora M.: Heat transfer during condensation of refrigerants in tubular minichannels. Arch. Thermodyn. 33(2012), 2, 3–22.
- [14] ASHRAE: ANSI/ASHRAE Standard 41.2-1987: Standard Methods for Air Velocity and Airflow Measurement (2018).
- [15] Manual Ansys-CFX, Release 2020 R2. http://www.ansys.com (accessed 15 July 2020).
- [16] Jasinski P.B., Kowalczyk M.J., Romaniak A., Warwas B., Obidowski D., Gutkowski A.: Investigation of thermal-flow characteristics of pipes with helical micro-fins of variable height. Energies 14(2021), 8, 2048.
- [17] Kang, Hie-Chan & Jun, Gil.: Heat transfer and flow resistance characteristics of louver fin geometry for automobile applications. J. Heat Transf. 133 (2011), 101802.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74c3e57c-032f-4e30-9fb5-756f8f1e651f