PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synchronous fluorescence spectra of water contaminated by dispersed crude oil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of petroleum extraction and transport technology does not ensure complete isolation of these substances from the natural environment. This problem is exacerbated by the location of mining equipment on the sea shelf and the fact that numerous submarine pipelines, tankers and handling terminals can also emit oil pollution. Therefore, the possibility of detecting oil dispersed in the water is particularly important. This paper reports the efforts to identify methods of characterization of the water containing the crude oil emulsion in a very low concentration (a few to several tens of ppm). Due to this, the effect of emulsion concentration on the possibility of its objective characterization using synchronous fluorescence spectra was studied. The similarity of spectra at various oil concentrations was analysed. It has been shown that the stabilization of the shape of synchronous fluorescence spectra occurs at relatively low oil concentrations.
Czasopismo
Rocznik
Strony
161--169
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Gdynia Maritime University, Physics Department, Morska 81–87, 81-226 Gdynia, Poland
  • Gdynia Maritime University, Physics Department, Morska 81–87, 81-226 Gdynia, Poland
Bibliografia
  • [1] Ycharts, World Crude Oil Production, 2018. https://ycharts.com/indicators/world_crude_oil_production (accessedFebruary 25, 2019).
  • [2] Statista, Transport volume of crude oil in global seaborne trade from 2010 to 2017, 2017. https://www.statista.com/statistics/264013/transport-volume-of-crude-oil-in-seaborne-trade/(accessed June2019).
  • [3] JI Z.-G, JOHNSON W., WIKEL G., Catastrophic oil spill analysis, Risk Analysis XI, WIT Transactions on Information and Communication Technologies, Vol. 47, 2014, pp. 17–25, DOI:10.2495/RISK140021.
  • [4] MICHEL J., FINGAS M., Oil spills: causes, consequences, prevention, and countermeasures, [In] Fossil Fuels, [Ed.] G.M. Crawley, World Scientific, 2016, pp. 159–201, DOI:10.1142/9789814699983_0007.
  • [5] HELCOM Indicators, Results and confidence volume of oil detected in the Baltic Sea, http://www.helcom.fi/baltic-sea-trends/indicators/operational-oil-spills-from-ships/results-and-confidence (accessed June 2019).
  • [6] HU C., FENG L., HOLMES J., SWAYZE G.A., LEIFER I., MELTON C., GARCIA O., MACDONALD I., HESS M., MULLER-KARGER F., GRAETTINGER G., GREEN R., Remote sensing estimation of surface oil volume during the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico: scaling up AVIRIS observations with MODIS measurements, Journal of Applied Remote Sensing 12(2), 2018, article 026008, DOI:10.1117/1.JRS.12.026008.
  • [7] FINGAS M., Oil Spill Science and Technology, 2nd Ed., Elsevier, 2017.
  • [8] LAKOWICZ J.R., Principles of Fluorescence Spectroscopy, 3rd Ed., Springer, Boston, MA, 2006, DOI:10.1007/978-0-387-46312-4.
  • [9] DOWNARE T.D., MULLINST O.C., Visible and near-infrared fluorescence of crude oils, Applied Spectroscopy 49(6), 1995, pp. 754–764, DOI:10.1366/0003702953964462.
  • [10] WANG Z., STOUT S.A., Oil Spill Environmental Forensics: Fingerprinting and Source Identification, Elsevier, 2007.
  • [11] SKOU N., SORENSEN B., POULSON A., A new airborne dual frequency microwave radiometer for mapping and quantifying mineral oil on the sea surface, Proceedings of the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments, ERIM Conferences, 1994, Ann Arbor, Michigan, pp. II559–II565.
  • [12] ZIELINSKI O., BUSCH J.A., CEMBELLA A.D., DALY K.L., ENGELBREKTSSON J., HANNIDES A.K., SCHMIDT H., Detecting marine hazardous substances and organisms: sensors for pollutants, toxins and pathogens, Ocean Science 5(3), 2009, pp. 329–349, DOI:10.5194/os-5-329-2009.
  • [13] BASZANOWSKA E., ZIELINSKI O., OTREMBA Z., TOCZEK H., Influence of oil-in-water emulsions on fluorescence properties as observed by excitation-emission spectra, Journal of the European Optical Society – Rapid Publications 8, 2013, article 13069, DOI:10.2971/jeos.2013.13069.
  • [14] BASZANOWSKA E., OTREMBA Z., Spectral signatures of fluorescence and light absorption to identify crude oils fund in the marine environment, Journal of the European Optical Society – Rapid Publications 9, 2014, article 14029, DOI:10.2971/jeos.2014.14029.
  • [15] BASZANOWSKA E., OTREMBA Z., Fluorometry in application to fingerprint of petroleum products present in the natural waters, Journal of the European Optical Society–Rapid Publications 12, 2016, article 16, DOI:10.1186/s41476-016-0018-4.
  • [16] PATRA D., MISHRA A., Total synchronous fluorescence scan spectra of petroleum products, Analytical and Bioanalytical Chemistry 373(4–5), 2002, pp. 304–309, DOI:10.1007/s00216-002-1330-y.
  • [17] PORYVKINA L., BABICHENKO S., DAVYDOVA O., SFS characterisation of oil pollution in natural water, Proceedings of Fifth International Conference on Remote Sensing for Marine and Coastal Environments, San Diego, California, October 5–7, 1998, Vol. 2, pp. 520–524.
  • [18] LLOYD J.B.F., Synchronized excitation of fluorescence emission spectra, Nature Physical Science 231, 1971, pp. 64–65, DOI:10.1038/physci231064a0.
  • [19] PATRA D., MISHRA A.K., Recent developments in multi-component synchronous fluorescence scan analysis, Trends in Analytical Chemistry 21(12), 2002, pp. 787–798, DOI:10.1016/S0165-9936(02)01201-3.
  • [20] SHAVER M., MCGOWN L.B., Fluorescence studies of complex coal liquid samples using the life time synchronous spectrum (LiSS), Applied Spectroscopy 49(6), 1995, pp. 813–818, DOI:10.1366/0003702953964561.
  • [21] BASZANOWSKA E., OTREMBA Z., ROHDE P., ZIELINSKI O., Adoption of the time resolved fluorescence to oil type identification, Journal of KONES Powertrain and Transport 18(2), 2011, pp. 25–29.
  • [22] ROHDE P., BUSCH J.A., HENKEL R.H., VOSS D., ZIELINSKI O., Detection and identification of hydro-carbons in marine waters using time-resolved laser-fluorescence: set-up and first results of a new submersible sensor, Proceedings OCEANS 2009–EUROPE, Bremen, Germany 2009, pp. 1–5, DOI:10.1109/OCEANSE.2009.5278101.
  • [23] COBLE P.G., Colored dissolved organic matter in seawater, [In] Subsea Optics and Imaging. [Eds.] J. Watson, O. Zielinski, 1st Ed., Woodhead Publishing, 2013, pp. 98–119.
  • [24] DROZDOWSKA V., FREDA W., BASZANOWSKA E., RUDŹ K., DARECKI M., HELDT J., TOCZEK H., Spectral properties of natural and oil polluted Baltic seawater – results of measurements and modelling, The European Physical Journal Special Topics 222(9), 2013, pp. 2157–2170, DOI:10.1140/epjst/e2013-01992-x.
  • [25] KOWALCZUK P., STOŃ-EGIERT J., COOPER W.J., WHITEHEAD R.F., DURAKO M.J., Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy, Marine Chemistry 96(3–4), 2005, pp. 273–292, DOI:10.1016/j.marchem.2005.03.002.
  • [26] MIRANDA M., TROJZUCK A., VOSS D., GASSMANN S., ZIELINSKI O., Spectroscopic evidence of anthropogenic compounds extraction from polymers by fluorescent dissolved organic matter in natural water, Journal of the European Optical Society–Rapid Publications 11, 2016, article 16014, DOI:10.2971/jeos.2016.16014.
  • [27] ZIELINSKI O., RÜSSMEIER N., FERDINAND O.D., MIRANDA M.L., WOLLSCHLÄGER J., Assessing fluorescent organic matter in natural waters: towards in situ excitation-emission matrix spectroscopy, Applied Sciences 8(12), 2018, article 2685, DOI:10.3390/app8122685.
  • [28] BASZANOWSKA E., OTREMBA Z., Oil identification based on total synchronous spectra, Journal of KONES Powertrain and Transport 21(2), 2014, pp. 15–20, DOI:10.5604/12314005.1133857.
  • [29] BASZANOWSKA E., OTREMBA Z., Description of diesel fuel based on synchronous fluorescence spectroscopy, Journal of KONES Powertrain and Transport 24(1), 2017, pp. 39–45, DOI:10.5604/01.3001.0010.2793.
  • [30] BASZANOWSKA E,. OTREMBA Z., Properties of the Baltic crude oil in the oil-in-water emulsion form: excitation-emission spectra, Journal of KONES Powertrain and Transport 25(1), 2018, pp. 7–14, DOI:10.5604/01.3001.0012.2438.
  • [31] RALSTON C.Y., WU X., MULLINS O.C., Quantum yields of crude oils, Applied Spectroscopy 50(12), 1996, pp. 1563–1568, DOI:10.1366/0003702963904601.
  • [32] STEFFENS J., LANDULFO E., COURROL L.C., GUARDANI R., Application of fluorescence to the study of crude petroleum, Journal of Fluorescence 21, 2011, pp. 859–864, DOI:10.1007/s10895-009-0586-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74c097e6-4175-4e3a-86de-ac65be6fae61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.