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Abstract. In this paper, we propose a new image denoising method based on wavelet 

thresholding. In this method, we introduce a new nonlinear thresholding function character-

ized by a shape parameter and basic properties. These characteristics make the new method 

able to achieve a compromise between both traditional thresholding techniques such as 

Hard and Soft thresholding. The experimental results show that our proposed method pro-

vides better performance compared to many classical thresholding methods in terms of the 

visual quality of the denoised image. 
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1. Introduction  

Recovering an image that is corrupted by a noise during its acquisition or 

transmission is an open issue in the field of image processing and computer vision 

problems. Many researchers have been interested in noise reduction methods. 

These methods aim to recover the image in a way to be as close as possible to the 

original image. A vast number of papers about classical techniques in the spatial 

and transform domain has been published in literature [1]. Recently, the Multi-

Diagonal Matrix Filter (MDMF) [2] and Lambda Multi-Diagonal Matrix Filter 

(Lambda-MDMF) [3] are proposed methods for image denoising at level of the 

spatial domain, which have given best performance compared to the Mean and 

Median filter [1]. At present, the most commonly used method for noise removal is 

the Discrete Wavelet Transform (DWT) [4, 5], which has given main contributions 

to image compression and denoising [6, 7]. In this approach, the thresholding of 

wavelet coefficients is a basic step in the denoising algorithm, where via  

a selected threshold value, only a small number of wavelet coefficients contain the 
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necessary information of the image. Donoho and Johnstone [8] have proposed the 

hard and the soft thresholding techniques, that are the first and most widely used in 

image denoising with the Universal Threshold value (UT) [8]. In addition, the hard 

thresholding function is discontinuous and the soft thresholding function is contin-

uous with a discontinuous derivative. 

However, the thresholding techniques still suffer from the selection of the con-

venient threshold value. Then, the optimization methods as Stein's Unbiased Risk 

Estimate (SURE) [9] requires the second derivative of the thresholding function for 

obtaining an optimal threshold value. Further, Tang et al. [10] have considered that 

the differentiability of the thresholding function make the reconstructed signal 

more smoother.  

For this purpose, in this paper, we propose a new class of a smooth nonlinear 

thresholding function based on the Gauss error function in its mathematical expres-

sion. This new thresholding function has high order derivatives into subintervals 

and characterized by a shape parameter, that can make it flexibly adjusted when we 

change the parameter value. Moreover, the simulation results have proved that the 

denoising using this new thresholding function has provided better performance 

compared to many other thresholding methods in terms of the visual quality of the 

denoised image. 

This work is organized as follows: The next section recalls the principle of the 

wavelet denoising with an additive Gaussian noise. Section 3 introduces the classi-

cal thresholding methods and main shrinkage rule. Section 4 presents the new de-

noising  method that is characterized by a new nonlinear thresholding function and 

describes the procedure of the proposed denoising method algorithm. Section 5 

compares the simulation results of our proposed method with other thresholding 

methods.  

Finally, we close this work by a conclusion and main references.       

2. Noise reduction based on wavelet denoising 

Let us consider an original image f  of size N M×  pixels, that will be recov-

ered. Assume that f  is corrupted by an independent and an identically (i,i,d) zero 

mean white Gaussian noise n  with standard deviation σ . The observed noisy im-

age g  will be given by this relation: 

 ( , ) ( , ) ( , ),   1, ..., ,  1,...,g i j f i j n i j i N j M= + = =  (1) 

The goal of threshold denoising is to remove the noise from g  by estimating fɶ , 

which minimizes the mean square error (MSE) risk defined as:   

 ( )
2

1 1

1
( , ) ( , )

M N

j i

MSE f i j f i j
N M

= =

= −

×
∑∑ ɶ  (2) 
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Then, fɶ  maximizes the Peak Signal to Noise Ratio (PSNR) in dB, that is written 

by:  

 
2

10

255
10logPSNR

MSE

 
=  

 
 (3) 

In the wavelet domain, the Discrete Wavelet Transform (DWT) decomposes the 

noisy image g  into the following orthonormal bases at level J  ( 1)J ≥ : 
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and ,  ϕ ψ  are respectively, the scaling and wavelet functions [5]. 

Then, the decomposition into { }21,( , ) ,   ( , )
J k l

k lϕ
−

∈Ζ , { }(1) 2

1,( , ) ,  ( , )
J k l

k l
−

Ψ ∈Ζ , 

{ }(2) 2

1,( , ) ,  ( , )
J k l

k l
−

Ψ ∈Ζ  and { }(3) 2

1,( , ) ,  ( , )
J k l

k l
−

Ψ ∈Ζ  produces four subbands, are 

respectively LL, LH, HL and HH (see Fig. 1). The HH, HL and LH are called de-

tail subbands and LL is called an approximation subband. 

The wavelet thresholding denoising method processes each coefficient from the 

detail subbands with a thresholding function to obtain g . Then, the denoised esti-

mation image fɶ  of the original image f  is the inverse discrete wavelet transform 

(IDWT) of g  , i.e, ( )f IDWT g=
ɶ . 

 

HL LL 

HH LH 

Fig. 1. Decomposition at level J = 1 
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3. Wavelet denoising using thresholding function  

In the wavelet denoising, the way to perform denoising on images is by 

thresholding. The thresholding is a simple technique applied to wavelet coefficients 

using a thresholding function η . The function η  should be characterized by  

a threshold value ( ) 0λ λ >  and two basic properties such as: Elimination of the 

small wavelet coefficients and reduction of the effect of large coefficients.  

Donoho and Johnstone [8] have introduced two primary thresholding methods, 

which are Hard and Soft thresholding. 

The Hard thresholding kills the wavelet coefficients, whose absolute values are 

lower than the threshold and keeps the other coefficients. The Hard thresholding 

function is expressed as follows:   

 
if

( , )
0 if

H

x x

x

x

λ
η λ

λ

 >
= 

≤
 (5) 

The Soft thresholding kills the coefficients, whose absolute values are lower than 

the threshold and shrinks the nonzero coefficients towards zero. The soft threshol-

ding function is defined as: 
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S
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x
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λ
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 (6) 

Note that the Hard thresholding function is discontinuous at x λ= . Due to this di-

scontinuity, this function yields artifacts in the denoised image. Whereas, the Soft 

thresholding function is continuous, so that the pseudo Gibbs phenomena can be 

avoided. But, when we reduce the coefficients by the threshold value, then in some 

cases the reconstructed image will be motivated by some deviations. Then, to over-

come these drawbacks, Gao [11] considered the nonnegative Garrote thresholding 

function, which is continuous and shrinks or kills the coefficients. On the other 

hand, this thresholding function offers samples of advantages. The Garrote 

thresholding function is given by: 
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if
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0 if
G

x x

x x

x

λ
λ

η λ

λ


− >

= 
 ≤

 (7) 

and performs better than the two precedent thresholding techniques in terms of the 

visual quality of the denoised image.   
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In another side, the choice of a suitable threshold value is subject to shrinkage 

rules. Donoho and Johnstone [8] have proposed the Visu Shrink rule, where the 

threshold value is the Universal Threshold (UT) and defined as follows:  

 2log( )N Mλ σ= ×  (8) 

where 2
σ  is the noise variance and N M×  represents the size of the image. Mo-

reover, the noise level σ  can be estimated according to this formula [8]:  
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 (9) 

This method yields the best performance when the number of the pixels reaches in-

finity. Further, it can only deal with an additive Gaussian noise. 

4. Presentation of the new denoising method 

4.1. Proposed nonlinear thresholding function 

The continuity in the Soft thresholding function is better property, but its first 

derivative is discontinuous and constant. So, in order to overcome the shortcom- 

ings of the Hard and the Soft thresholding functions, we propose an alternative  

thresholding function that verifies a compromise between both traditional thresh- 

olding functions. This new thresholding function is based on the Gauss Error  

Function in its mathematical expression and characterized by a shape parameter  

α  ( 0α > ). Its expression is given by the following formula:  
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 (10) 

This thresholding function is constructed for to be continuous and  graphically 

located between the Hard and the Soft thresholding function. 

From (10), we can conclude that: when x λ= , 
,

( , ) 0
New

x
α

η λ =  and when 

x λ→ , 
,

( , ) 0
New

x
α

η λ → . Then, the new thresholding function is continuous at the 

threshold point λ . If x →+∞, 
,

( , )
New

x x
α

η λ → , which can be seen that with in-

creasing x , 
,

( , )
New

x
α

η λ  becomes gradually close to x , then 
,New α

η  has the same 



B. Dehda, K. Melkemi 60 

asymptotic convergence rate as the Hard and Soft thresholding function. Further-

more, the shape parameter α  can be adjusted freely such as, when 0α → , 

,

( , ) ( , )
New S

x x
α

η λ η λ→ and when α → +∞ , 
,

( , ) ( , )
New H

x x
α

η λ η λ→  (see Fig. 2). 

 

Fig. 2. Graph of Hard, Soft, Garrote and Proposed thresholding with  

( 0.05,  0.2, 0.3α α α= = = ) respectively at 10λ =    

Moreover, this new thresholding function has the following properties: 

Theorem 1. The New thresholding function 
,New α

η  is graphically located be-

tween the Hard and the Soft thresholding function. 

Proof: We put for all x,   

2

0

2
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x

t
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−
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Then, f is increasing function in the domain of ] [,−∞ +∞  and has the following 

properties: 
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For ,x λ< − then 0
x λ

α
λ
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,
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For ,x λ≤ the functions 
,New α

η , 
H

η  and 
S

η  are equal to zero. 

Theorem 2. The New thresholding function 
,New α

η  is continuous in the domain 

of ] [,−∞ +∞ .  

Proof: Since 
,New α

η  is continuous at x λ= , then 
,New α

η  is continuous every-

where. 

Theorem 3. The New thresholding function 
,New α

η  is monotonous in the domain 

of ] [,−∞ +∞ .  

Proof: For x λ< − , we have   
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In another side, if x λ> , then 
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Since 
,New α

η  is continuous everywhere, then 
α

η
,New
 is monotonous in the domain 

of ] [+∞∞− , .  
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Theorem 4. The New thresholding function 
α

η
,New
 has high order derivatives 

into subintervals ] [λ−∞− ,  and ] [+∞,λ . 

Proof: From (11) and (12), we conclude that 
α

η
,New
 has high order derivatives 

into subintervals ] [λ−∞− ,  and ] [+∞,λ . 

Remark 1. Since 
α

η
,New
 has high order derivatives into subintervals, then the 

denoised image will be smooth.  

Remark 2. In the literature, there are various optimization methods for deter-

mining an optimal shape parameter, whose Mean Square Error is as little as possi-

ble. 

4.2. Proposed denoising method algorithm 

In this subsection, we illustrate the basic steps concerning the procedure of the 

proposed denoising method algorithm with its flowchart (see Fig. 3).  

Step 1. Load the noisy image. 

Step 2. Apply the Discrete Wavelet Transform at level J  for the noisy image, then 

we get (LL, LH, HL, HH). 

Step 3. Estimate the noise level σ  using (9). 

Step 4. Select the shrinkage rule applied to the proposed thresholding function. 

Step 5. Take the Inverse Discrete Wavelet Transform to the thresholded compo-

nents. 

Step 6. Get the denoised image. 

 

 

Estimate the 

noise level  

  

     

  
DWT  
  

  

     

 

Load noisy    

 Image  

 

  

        

Thresholding  
 using 

proposed 

method  

  

    
 

  
IDWT  

  

    
 

  
Denoised 

 Image  

Fig. 3. Flowchart corresponding to the proposed method algorithm 



Image denoising using new wavelet thresholding function 63

5. Experimental results and discussion 

In order to verify the effectiveness of our proposed denoising method, we com-

pare it with the classical thresholding methods such as Hard, Soft and Garrote 

thresholding using the Visu Shrink rule. These thresholding methods are applied to 

various noisy test images of 512 512× pixels, that are corrupted by a Gaussian 

noise with different noise levels σ  (see Fig. 4). The wavelet that is used in all 

methods is the Haar wavelet in the decomposition level 1J = , where the optimal 

shape parameter is determined by a stochastic approximation  method (Robbins- 

-Monro algorithm) [12]. So, the simulation results using Matlab are presented in 

Table 1. 

Table 1 

Comparison of PSNR (dB) results between the classical and proposed denoising 

methods 

Shape 

parameter 

Proposed 

method 
Garrote Soft Hard 

Noise 

level 
Images 

0.009 28.1019 27.7094 27.7677 28.0440 10  

0.01 25.2104 24.5666 24.6132 24.6469 15  

0.05 22.6088 22.5437 22.4018 22.3580 20 Barbara 

0.1 20.4312 20.1902 19.6226 20.0717 25  

1 18.5197 18.3651 18.1438 18.1999 30  

0.009 27.8906 27.3350 27.7896 25.7620 10  

0.15 25.0008 24.7721 24.2036 24.6985 15  

0.15 22.2295 21.4785 22.1981 21.8492 20 Boat 

1 20.4384 20.1240 20.0176 19.9245 25  

0.05 18.7409 18.5476 18.6323 18.0349 30  

0.09 28.1492 28.0274 28.1068 27.8897 10  

0.9 23.1930 22.8450 22.4868 22.9283 15  

0.09 19.2539 18.8856 18.9017 19.2072 20 Cameraman 

0.25 16.2988 15.7873 16.0629 16.1831 25  

1 13.6726 13.4052 13.2885 13.5814 30  

 

This Table presents the PSNR values corresponding to each image at different 

noise levels. The PSNR is a denoising criterion used to evaluate the quality of the 

denoised image, where the higher PSNR produces better denoising quality. Appar-

ently, the experimental results show that at each noise level the PSNR that corre-

sponds to our proposed method is the highest compared to all other methods for 

each image. Furthermore, the outperformance of the Garrote method for each 
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image compared to the Hard and the Soft method appears at the high noise levels 

due to the selection of the threshold value. Whereas, our proposed method avoids 

this problem due to the existence of the shape parameter. Thus, our proposed de-

noising method outperforms all other denoising methods in terms of the visual 

quality of the denoised image (see Fig. 5). 

 

Fig. 4. Original and corrupted images for Barbara with Gaussian noise level ( )20σ =   

  

Fig. 5. Denoised images, (a), (b), (c), (d) using Hard, Soft, Garrote and Proposed method 

respectively at Gaussian noise level ( )20σ =  
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6. Conclusions 

In this paper, we have developed a new image denoising method based on 

wavelet thresholding. In this new denoising method, the thresholding function is 

characterized by many mathematical properties, where our proposed method can 

overcome the shortcomings of the classical thresholding methods. The experi-

mental results with many test images have shown the outperformance of our de-

noising method compared to Hard, Soft and Garrote thresholding methods in terms 

of the Peak Signal to Noise Ratio (PSNR), where our proposed method has given 

the highest PSNR.   
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