Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the gas metal arc welding (GMAW) process was investigated for similar and dissimilar joints of A844 and A516 steel plates in different thicknesses. For welding, E 19-10H filler metal and category D joint design were used for joining nozzles to the cargo tank body. Also, the dependence of the microstructure, strength, and impact energy (cryogenic fracture toughness) on the cooling rate (∂T/∂t) was evaluated. Due to the effect of the square of thickness on the heat transfer rate, with the increase in thickness (8–10 mm), the cooling rate (∂T/∂t) increased by 57% for similar joints. According to this increase, the strength and cryogenic fracture toughness for the similar joints of A844 steel plates increased by 8 and 9%, respectively. For similar joints of A516 steel plates, it increased by 6 and 9%, respectively. The strength and cryogenic fracture toughness of dissimilar joints with different thicknesses depended on the type of base metals and the different cooling rates of each base metal. Continuous plastic deformation was observed in the weld zone during bending tests because E19-10H filler metal has more than 30% elongation. Also, the presence of any kind of cracks in the joints was ruled out by performing radiographic tests.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e185, 2024
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
- School of Mechanical Engineering, Xijing University, Xi’an 710123, China
- Engineering Research Center of Hydrogen Energy Equipment & Safety Detection, Universities of Shaanxi Province, Xijing University, Xi’an 710123, China
autor
- School of Mechanical Engineering, Xijing University, Xi’an 710123, China
- Intelligent Manufacturing Research and Development Center, Xijing University, Xi’an 710123, China
autor
- School of Mechanical Engineering, Xijing University, Xi’an 710123, China
- Intelligent Manufacturing Research and Development Center, Xijing University, Xi’an 710123, China
Bibliografia
- 1. Gook S, El-Batahgy A-M, Gumenyuk A, Biegler M, Rethmeier M. Application of hybrid laser arc welding for construction of lng tanks made of thick cryogenic 9% ni steel plates. Lasers Manuf Mater Process. 2023;10:659–80. https://doi.org/10.1007/s40516-023-00229-2.
- 2. Sadeghi B, Sharifi H, Rafiei M, Tayebi M. Effects of post weld heat treatment on residual stress and mechanical properties of GTAW: the case of joining A537CL1 pressure vessel steel and A321 austenitic stainless steel. Eng Fail Anal. 2018. https://doi.org/10.1016/j.engfailanal.2018.08.007.
- 3. Gao L, Yang Y, Gu B, Li S, Xu G, Yu Y. Experimental and simulation analysis on the effect of vibratory stress relief on impact toughness of Q345/316 L dissimilar steel welded joints. Mater Today Commun. 2024;38: 108084. https:// doi. org/ 10. 1016/j.mtcomm.2024.108084.
- 4. Zhou J, Liu X, Li X, Huo X, Zhao B, Ding K, Gao Y. Microstructure details and impact toughness for dissimilar 9Cr/CrMoV welded joints fabricated by NG-SAW and NG-TIG techniques. J Mater Res Technol. 2024;29:2936–46. https://doi.org/10.1016/j.jmrt.2024.02.048.
- 5. Prabu SS, Ramkumar KD, Arivazhagan N. Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds. IOP Conf Ser Mater Sci Eng. 2017;263:62073. https://doi.org/10.1088/1757-899X/263/6/062073.
- 6. Kumar P, Ghosh SK, Saravanan S, Barma JD. Effect of explosive loading ratio on microstructure and mechanical properties of Al5052/AZ31B explosive weld composite. JOM. 2023;75:167–75.https://doi.org/10.1007/s11837-022-05579-4.
- 7. Fang JX, Li SB, Dong SY, Wang YJ, Huang HS, Jiang YL, Liu B. Effects of phase transition temperature and preheating on residual stress in multi-pass & multi-layer laser metal deposition. J Alloys Compd. 2019;792:928–37. https://doi.org/10.1016/j.jallcom.2019.04.104.
- 8. Fang JX, Ma GZ, Tian HL, Li SB, Huang HS, Liu Y, Jiang YL, Liu B. Transformation-induced strain of a low transformation temperature alloy with high hardness during laser metal deposition. J Manuf Process. 2021;68:1585–95. https:// doi. org/ 10. 1016/j.jmapro.2021.06.066.
- 9. Luo Y, Liu X, Chen F, Zhang H, Xiao X. Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck. Metals (Basel). 2023. https://doi.org/10.3390/met13081402.
- 10. Fang JX, Wang JX, Wang YJ, He HT, Zhang DB, Cao Y. Microstructure evolution and deformation behavior during stretching of a compositionally in homogeneous TWIP-TRIP cantor-like alloy by laser powder deposition. Mater Sci Eng A. 2022;847: 143319.https://doi.org/10.1016/j.msea.2022.143319.
- 11. Elmer JW, Allen SM, Eagar TW. Microstructural development during solidification of stainless steel alloys. Metall Trans A. 1989;20:2117–31. https://doi.org/10.1007/BF02650298.
- 12. Liu S, Zhao S, Wu Z, Wei Z, Hu G. Study of microstructure and mechanical properties of SA553/SA537 steels joints using multi-pass welding for pressure vessels application. Int J Press Vessel Pip. 2024;209: 105186. https://doi.org/10.1016/j.ijpvp.2024.105186.
- 13. Ramkumar KD, Mithilesh P, Varun D, Reddy ARG, Arivazhagan N, Narayanan S, Kumar KG. Characterization of microstructure and mechanical properties of inconel 625 and AISI 304 dissimilar weldments. ISIJ Int. 2014;54:900–8. https://doi.org/10.2355/isijinternational.54.900.
- 14. Dupont JN, Banovic SW, Marder AR. Microstructural evolution and weldability of dissimilar welds between a super austenitic stainless steel and nickel-based alloys. Weld J. 2003;82:125.
- 15. Kern A, Schriever U, Stumpfe J. Development of 9% nickel steel for LNG applications. Steel Res Int. 2007;78:189–94. https://doi.org/10.1002/srin.200705879.
- 16. Sharifi H, Raisi S, Tayebi M. The effect of stress relieving treatment on mechanical properties and microstructure of different welding areas of A517 steel. Mater Res Express. 2017. https://doi.org/10.1088/2053-1591/aa97c2.
- 17. Rogalski G, Świerczyńska A, Landowski M, Fydrych D. Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and incoloy 800HT nickel alloy. Metals (Basel). 2020. https://doi.org/10.3390/met10050559.
- 18. Shackleton DN, Lucas W. Shielding gas mixtures for high quality mechanized GMA welding of Q&T steel. Weld J.1974;53:537s–47s.
- 19. Maurya AK, Chhibber R, Pandey C. GTAW dissimilar weldment of sDSS 2507 and nickel alloy for marine applications: microstructure-mechanical integrity. Metall Mater Trans A. 2023;54:3311–40. https://doi.org/10.1007/s11661-023-07101-0.
- 20. Tesfaye FK. Parameter optimizations of GMAW process for dissimilar steel welding. Int J Adv Manuf Technol. 2023;126:4513–20. https://doi.org/10.1007/s00170-023-11356-7.
- 21. Soltani HM, Tayebi M. Comparative study of AISI 304L to AISI316L stainless steels joints by TIG and Nd:YAG laser welding. J Alloys Compd. 2018;767:112–21. https://doi.org/10.1016/j.jallcom.2018.06.302.
- 22. M. Tayebi, A. Rajaee, H.M. Soltani, Laser welding. In: K. Cooke(Ed.), Weld. Princ. Appl. Intech Open. 2022.
- 23. Baghel PK. Effect of SMAW process parameters on similar and dissimilar metal welds: an overview. Heliyon. 2022;8: e12161.https://doi.org/10.1016/j.heliyon.2022.e12161.
- 24. Saxena A, Kumaraswamy A, Madhusudhan Reddy G, Madhu V. Influence of welding consumables on tensile and impact properties of multi-pass SMAW Armox 500T steel joints vis-a-vis basemetal. Def Technol. 2018;14:188–95. https://doi.org/10.1016/j.dt.2018.01.005.
- 25. ASME Boiler and Pressure Vessel Committee on Welding and Brazing, Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators, Weld. Brazing Qualif. (n.d.).
- 26. Mohammad Soltani H, Tayebi M. Microstructural and mechanical investigation of brazing 304L stainless steel with corner joint using a Ni-based shim and wire. Mater Res Express. 2021;8:46532. https://doi.org/10.1088/2053-1591/abf76c.
- 27. Kumar P, Ghosh SK, Saravanan S, Barma JD, Meitei RKB. Effects of reinforcements in Al 5052 and AZ31B explosively weld composites. Arch Civ Mech Eng. 2024;24:133. https:// doi. org/ 10.1007/s43452-024-00940-7.
- 28. Kim J, Kim J, Kang S, Chun K. Laser welding of ASTM A553–1(9% Nickel Steel) (PART I: penetration shape by bead on plate). Metals (Basel). 2020. https://doi.org/10.3390/met10040484.
- 29. Kim J, Kim J. Laser welding of ASTM A553–1 (9% nickel steel)(part II: comparison of mechanical properties with FCAW). Metals (Basel). 2020. https://doi.org/10.3390/met10080999.
- 30. Prabu SS, Ramkumar KD, Arivazhagan N. Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding. IOP Conf Ser Mater Sci Eng. 2017;263:62072. https://doi.org/10.1088/1757-899X/263/6/062072.
- 31. Taarea D, Bakhtiyarov SI. Smithells metals reference book. 2004.p. 1–45. https://doi.org/10.1016/b978-075067509-3/50017-8.
- 32. Atapek ŞH, Tümer M, Kısasöz A, Mert T, Kerimak MZ. Investigation of microstructure, mechanical and corrosion properties of GMAW of dissimilar P91-HP alloy V-butt groove joint. Mater Chem Phys. 2024;313: 128811. https://doi.org/10.1016/j.matchemphys.2023.128811.
- 33. Casanova J, Sorger G, Vilaça P, Brandi SD. Microstructure and mechanical properties of 9% nickel steel welded by FSW. Int J Adv Manuf Technol. 2020;111:3225–40. https://doi.org/10.1007/s00170-020-06313-7.
- 34. Cabrera JM, Mateo A, Llanes L, Prado JM, Anglada M. Hot deformation of duplex stainless steels. J Mater Process Technol. 2003;143–144:321–5. https://doi.org/10.1016/S0924-0136(03)00434-5.
- 35. Chen Y, Sun S, Zhang T, Zhou X, Li S. Effects of post-weldheat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater Sci Eng A. 2020;771: 138545. https://doi.org/10.1016/j.msea.2019.138545.
- 36. Yan R, Mela K, Yang F, El Bamby H, Veljkovic M. Equivalent material properties of the heat-affected zone in welded cold-formed rectangular hollow section connections. Thin-Walled Struct. 2023;184: 110479. https:// doi. org/ 10. 1016/j. tws. 2022.110479.
- 37. Gupta SK, Mehrotra S, Raja AR, Vashista M, Yusufzai MZK. Effect of welding speed on weld bead geometry and percentage dilution in gas metal arc welding of SS409L. Mater Today Proc.2019;18:5032–9. https://doi.org/10.1016/j.matpr.2019.07.497.
- 38. Kou S. Welding metallurgy. Wiley. 2002. https://doi.org/10.1533/9781845698775.110.
- 39. Cen L, Du W, Gong M, Lu Y, Zhang C, Gao M. Effect of high-frequency beam oscillation on microstructures and cracks in laser cladding of Al-Cu-Mg alloys. Surf Coatings Technol. 2022;447:128852. https://doi.org/10.1016/j.surfcoat.2022.128852.
- 40. Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Wiley; 2005.
- 41. Wu C, Li S, Zhang C, Wang X. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates. J Mater Sci. 2016;51:2529–39.https://doi.org/10.1007/s10853-015-9565-0.
- 42. Morito S, Yoshida H, Maki T, Huang X. Effect of block size on the strength of lath martensite in low carbon steels. Mater Sci Eng A. 2006;438–440:237–40. https://doi.org/10.1016/j.msea.2005.12.048.
- 43. Caron RN, Krauss G. The tempering of Fe-C lath martensite. Metall Trans. 1972;3:2381–9.
- 44. Kumar R, Dwivedi RK, Ahmed S. Influence of multiphase high silicon steel (retained austenite-RA, ferrite-F, bainite-Band pearlite-P) and carbon content of RA-Cγ on rolling/sliding wear. SILICON. 2021;13:3307–20. https://doi.org/10.1007/s12633-020-00682-0.
- 45. Basantia SK, Bhattacharya A, Khutia N, Das D. Plastic behavior of ferrite-pearlite, ferrite-bainite and ferrite–martensite steels: experiments and micromechanical modelling. Met Mater Int.2021;27:1025–43. https://doi.org/10.1007/s12540-019-00519-5.
- 46. Yuhua C, Yuqing M, Weiwei L, Peng H. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt Laser Technol. 2017;91:197–202. https://doi.org/10. 1016/j.optla stec. 2016. 12.028.
- 47. U.K. Ghosh, Design of Welded Steel Structures: Principles and Practice, CRC Press, 2015. https://books.google.com/books?id=V96YCgAAQBAJ.
- 48. American Welding Society, AWS A5.9/A5.9M:2006. In: Specif. Bare Stainl. Steel Weld. Electrodes Rods, 2006: p. 14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74bdc3e1-78f8-457b-8084-e61f1fb35562
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.