PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in air Water Vapour Pressure, Relative Humidity and Carbon Dioxide Concentration in Summer on the City Outskirts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urban greenery contributes to improve air quality through carbon dioxide sequestration and to increase air humidity by transpiration. These processes are dependent on diurnal physiological activity of vegetation as well as its spatial distribution. In our study we aimed to find out (1) how urban greenery can change the atmospheric conditions during a day and (2) if there is a difference between a housing estate interior with abundant greenery and a wide street of heavy traffic. The examination was carried out a suburban district of Warsaw, in two sites of contrasting characteristics: in a street with heavy traffic during rush hours and in a housing estate nearby. Gas measurements were carried out using an infrared gas analyser included in a portable photosynthesis system on two sunny days in July 2021. On each day measurements of air water vapour pressure and atmospheric carbon dioxide were taken in both locations from early morning to the evening. The results showed that water vapour pressure in the air increased from ca. 12 to nearly 18 hPa from 6:45 a.m. to 9:00–9:30 a.m., respectively, and then gradually decreased until 7:00 p.m. on both measurement days. Carbon dioxide concentration in the atmosphere in the early morning hours exceeded 430–450 ppm and then decreased to 400 ppm or even less than 360 ppm depending on the day. We concluded that the site characteristics had not an important effect on relative humidity and carbon dioxide concentration, but vapour pressure deficit was higher in the street.
Rocznik
Strony
163--172
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Department of Environment Protection and Dendrology, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warszawa, Poland
  • Department of Environment Protection and Dendrology, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warszawa, Poland
  • Department of Landscape Architecture, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02787 Warszawa, Poland
Bibliografia
  • 1. Baldocchi D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmospherethe state and future of the eddy covariance method. Global Change Biology, 20(12), 3600-3609.
  • 2. Cregg B., Rouse R., Ellison-Smith D. 2023. Genotypic variation in water relations and gas exchange of urban trees in Detroit, Michigan, USA. Urban Forestry & Urban Greening, 81, 127858.
  • 3. Fares S., Paoletti E., Calfapietra C., Mikkelsen T.N., Samson R., Le Thiec D. 2017. Carbon sequestration by urban trees. The Urban Forest: Cultivating Green Infrastructure for People and the Environment, Springer, 31-39.
  • 4. Fini A., Vigevani I., Corsini D., Wężyk P., BajorekZydroń K., Failla O., Cagnolati E., Mielczarek Ł., Comin S., Gibin M., Pasquinelli A., Ferrini F., Viskanic, P. 2023. CO2-assimilation, sequestration, and storage by urban woody species growing in parks and along streets in two climatic zones. Science of the Total Environment, 903, 166198.
  • 5. Forrester D.I. 2015. Transpiration and water-use eff iciency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiology, 35(3), 289-304.
  • 6. Gillner S., Vogt J., Tharang A., Dettmann S., Roloff A. 2015. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape and Urban Planning, 143, 33-42.
  • 7. Gratani L., Puglielli G., Catoni R. 2019a. Relationship between atmospheric CO2 concentration and vegetation in a hospital area: the Policlinico Umberto I in Rome. American Journal of Plant Sciences, 10(8), 1313-1324.
  • 8. Gratani L., Tarquini F., Catoni R. 2019b. Tree role in environmental quality amelioration of the Sapienza University of Rome Campus. American Journal of Plant Sciences, 10(11), 2096-2112.
  • 9. Haase D., Frantzeskaki N., Elmqvist T. 2014. Ecosystem services in urban landscapes: practical applications and governance implications. Ambio, 43(4), 407-412.
  • 10. Hewitt C.N., Ashworth K., MacKenzie A.R. 2020. Using green infrastructure to improve urban air quality (GI4AQ). Ambio, 49, 62-73.
  • 11. IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34.
  • 12. Jiang Y., Liu Y., Sun Y., Li X. 2023. Distribution of CO2 concentration and its spatial influencing indices in urban park green space. Forests, 14(7), 1396.
  • 13. Jungman T., Cirach M., Marando F., Barboza E.P., Khomenko S., Masselot P., Quijal-Zamorano M., Mueller N., Gasparrini A., Urquiza J., Heris M., Thondoo M., Nieuwenhuijsen M. 2023. Cooling cities through urban green infrastructure: a health impact assessment of European cities. The Lancet, 401(10376), 577-589.
  • 14. Konarska J., Uddling J., Holmer B., Lutz M., Lindberg F., Pleijel H., Thorsson S. 2016. Transpiration of urban trees and its cooling effect in a high latitude city. International Journal of Biometeorology 60, 159–172.
  • 15. Manickathan L., Defraeye T., Allegrini J., Derome D., Carmeliet J. 2018. Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agricultural and Forest Meteorology, 248, 259-274.
  • 16. Martin-StPaul N., Delzon S., Cochard, H. 2017. Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20(11), 1437-1447.
  • 17. Matasov V., Belelli Marchesini L., Yaroslavtsev A., Sala G., Fareeva O., Seregin I., Castaldi S., Vasenev V., Valentini, R. 2020. IoT monitoring of urban tree ecosystem services: possibilities and challenges. Forests, 11(7), 775.
  • 18. Nowak D.J., Hirabayashi S., Doyle M., McGovern M., Pasher J. 2018. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry & Urban Greening, 29, 40-48.
  • 19. Pan C., Zhu X., Wei N., Zhu X., She Q., Jia W., Liu M., Xiang W. 2016. Spatial variability of daytime CO2 concentration with landscape structure across urbanization gradients, Shanghai, China. Climate Research, 69(2), 107-116.
  • 20. Pawlak W., Fortuniak K. 2016. Eddy covariance measurements of the net turbulent methane flux in the city centre–results of 2-year campaign in Łódź, Poland. Atmospheric Chemistry and Physics, 16(13), 8281-8294.
  • 21. Russo A., Escobedo FJ, Timilsina N., Schmitt A.O., Varela S., Zerbe S. 2014. Assessing urban tree carbon storage and sequestration in Bolzano, Italy. International Journal of Biodiversity Science, Ecosystem Services & Management, 10(1), 54-70.
  • 22. Rahman M.A., Moser A., Rötzer T., Pauleit S. 2017. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology, 232, 443-456.
  • 23. Rakowska A., Wong K.C., Townsend T., Chan K.L., Westerdahl D., Ng S., Mocnik G., Drinovec L., Ning Z. 2014. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmospheric Environment, 98, 260-270.
  • 24. Sabir A., Yazar K. 2015. Diurnal dynamics of stomatal conductance and leaf temperature of grapevines (Vitis vinifera L.) in response to daily climatic variables. Acta Scientiarum Polonorum. Hortorum Cultus, 14(4), 3-15.
  • 25. Salem M., Almuzaini R., Kishawi Y. 2017. The impact of road transport on CO2 atmospheric concentrations in Gaza City (Palestine), and urban vegetation as a mitigation measure. Polish Journal of Environmental Studies 26(5), 2175-2188.
  • 26. Scharwies J.D., Dinneny J.R. 2019. Water transport, perception, and response in plants. Journal of Plant Research, 132, 311–324.
  • 27. Schwaab J., Meier R., Mussetti G., Seneviratne S., Bürgi C., Davin E.L. 2021. The role of urban trees in reducing land surface temperatures in European cities. Nature Communications, 12(1), 6763.
  • 28. Senosiain J.L. 2020. Urban regreeneration: Green urban infrastructure as a response to climate change mitigation and adaptation. International Journal of Design & Nature and Ecodynamics, 15(1), 33-38.
  • 29. Shen G., Wang Z., Liu C., Han Y. 2020. Mapping aboveground biomass and carbon in Shanghai’s urban forest using Landsat ETM+ and inventory data. Urban Forestry & Urban Greening, 51, 126655.
  • 30. Takano T., Ueyama M. 2021. Spatial variations in daytime methane and carbon dioxide emissions in two urban landscapes, Sakai, Japan. Urban Climate, 36, 100798.
  • 31. Tan P.Y., Wong N.H., Tan C.L., Jusuf S.K., Schmiele K., Chiam Z.Q. 2020. Transpiration and cooling potential of tropical urban trees from different native habitats. Science of the Total Environment, 705, 135764.
  • 32. Tsedeke R.E., Dawud S.M., Tafere S.M. 2021. Assessment of carbon stock potential of parkland agroforestry practice: the case of Minjar Shenkora; North Shewa, Ethiopia. Environmental Systems Research, 10, 1-11.
  • 33. Tsoka S., Tsikaloudaki A., Theodosiou T. 2018. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications – A review. Sustainable Cities and Society, 43, 55-76.
  • 34. Veerkamp C.J., Schipper A.M., Hedlund K., Lazarova T., Nordin A., Hanson H.I. 2021. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosystem Services, 52, 101367.
  • 35. Velasco E., Roth M., Tan S.H., Quak M., Nabarro S.D.A., Norford L. 2013. The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmospheric Chemistry and Physics, 13(20), 10185-10202.
  • 36. Ward H.C., Kotthaus S., Grimmond C.S.B., Bjorkegren A., Wilkinson M., Morrison W.T.J., Evans J.G., Morison J.I.L., Iamarino M. 2015. Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England. Environmental Pollution, 198, 186-200.
  • 37. Weissert L.F., Salmond J.A., Schwendenmann L. 2014. A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Climate, 8, 100-125.
  • 38. Winbourne J.B., Jones T.S., Garvey S.M., Harrison J.L., Wang L., Li D., Tempel P.H., Hutyra L.R. 2020. Tree transpiration and urban temperatures: current understanding, implications, and future research directions. BioScience, 70(7), 576-588.
  • 39. Wu Z., Pang X., Xing B., Zhao G., Sun S., Yuan K., Lu Y., Sun Q., Shang Q., Lu Y., Lyu Y., Chen, D. 2023. Three-dimensional spatiotemporal variability of CO2 in suburban and urban areas of Shaoxing City in the Yangtze River Delta, China. Science of The Total Environment, 881, 163501.
  • 40. Yan W., Zhong Y., Shangguan Z. 2016. A meta-analysis of leaf gas exchange and water status responses to drought. Scientific Reports, 6(1), 20917.
  • 41. Zhou W., Wang J., Cadenasso M.L. 2017. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74b2b5fe-8cc6-4257-886d-78076c312b91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.