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1. INTRODUCTION 
 
Today the Network – based Real Time Kinematic (Network RTK) technique is the most 
accurate relative GNSS kinematic positioning in real-time. Also in Poland the multiple 
reference stations network ASG-EUPOS which is a part of European Position 
Determination System (Bosy et al., 2008) provides the real-time data to use this 
technique. The basic idea of Network RTK is to use the network of reference stations to 
determinate the distance-dependent errors: ionospheric and geometric (tropospheric, 
orbital) biases. The biases can be used to generate the spatial correction terms and 
reduce the distance-dependent errors between the reference station and user receiver. 
This allows, within the coverage of the reference stations network, to fix carrier phase 
ambiguities and achieve cm-level positioning accuracy for up to 50km baseline (Rizos, 
2002).  
 
One of the most important issues for Network RTK techniques is how to estimate the 
ionospheric and geometric biases for the user’s location. In this paper, several 
interpolation methods are reviewed in details. The formulas of each of these methods as 
well as the numerical results for the test network (part of the ASG-EUPOS network) are 
also presented.   
 
2. METHODOLOGY FOR SPATIAL CORRECTION TERMS GENERATION 
 
The main steps of spatial correction terms algorithm can be describe as follows: 

• to fix the double-differenced carrier phase ambiguities between the reference 
stations (which coordinates are well known); 

• to determinate the distance-dependent biases (dispersive/ionospheric and non-
dispersive/geometric biases between reference stations; 

• to interpolate the distance-dependent biases for the user’s receiver location. 
 
2.1  Ambiguity resolution between reference stations 
 
Double-differenced carrier phase ambiguity resolution between reference stations is the 
first step to determinate spatial correlated errors. The length of baseline between 
reference stations on test area is up to 50km so ambiguity determination follows a  
wide lane/narrow lane (L5/L3) approach (Mervart, 1995; Chen et al., 2000). In these 
approach double-differenced wide lane (L5) ambiguity was resolved at first using 



“Melbourne-Wübbena” phase-code combination (Melbourne, 1985; Wübbena, 1985; 
Hofmann-Wellenhof et al., 2008): 

ࢃାࡹࣘ  ൌ
ࢉ

૚ࢌ െ ૛ࢌ
ሺࣘ૚ െ ࣘ૛ሻ െ

૚
૚ࢌ ൅ ૛ࢌ

ሺࡼ૚ࢌ૚ ൅   ૛ሻ (1)ࢌ૛ࡼ

 સ∆ࡸࡺ૞ ൌ
૚ࢌ െ ૛ࢌ

ࢉ સ∆ࣘࡹା(2) ࢃ  

where Φk is the carrier phase observable in cycles; Pk is code pseudorange observables; 
fk is the frequency of the carrier wave; સ∆ࣘ࢑ is the double-difference carrier phase 
observable in cycles; સ∆࢑ࡺ is the double-difference integer ambiguity. 
The Melbourne-Wübbena double-difference phase-code combination cancels out all bias 
terms in the observation equations (ionospheric and tropospheric delay, ephemeris 
errors) except integer ambiguity parameter. It allows to resolve wide lane integer 
ambiguity without a’priori models of biases. 
In the second step the ionosphere-free phase combination:  
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is using to determinate L1 integer ambiguity ሺસ∆ࡺ૚ሻ ܖܗܑܛܛ܍ܚܘܠ܍ ܡ܊: 
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where સ∆࣋ is the double-difference geometric satellite-to-receiver distance and સ∆ࢀ is 
the double-difference tropospheric delay (computed from tropospheric model). The 
effective wavelength of L1 in equation (4) is 10.7cm like in narrow lane combination. In 
the end the L2 integer ambiguity can be derived as: 

  સ∆ࡺ૛ ൌ સ∆ࡺ૚ െ સ∆ࡺ૞  (5)  

In order to estimate float ambiguity ൫સ∆ࡺෙ൯ as well as covariance matrix ሺۿસ∆ࡺෙ ሻ, the 
Kalman filter was used. The Least-squares AMBiguity Decorrelation Adjustment 
(LAMBDA) method (Teunissen, 1995) and Modified LAMBDA method (Chang et al., 
2005) were applied to fix ambiguity with ratio test (more than 3.0) as a threshold of 
validation. Cycle slips were detected and repaired using discontinuities in the double-
differenced ionospheric residuals.   
 
2.2 Distance-dependent biases between reference stations 
 
After solving out the double-differenced integer ambiguity for L1 and L2 frequencies 
between reference stations, the double-differenced carrier phase residuals ሺસ∆ഥࣘ  ሻ can࢑
be obtained, as follows: 
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The double-differenced tropospheric delay was computed using Saastamoinen model 
(Saastamoinen, 1973) with a standard atmosphere parameters and Niell mapping 
functions for wet and dry components (Niell, 1996). Final precise ephemerides from 
International GNSS Service (IGS) and relative antenna calibrations from National 
Geodetic Survey (NGS) (Mader, 1999) also were applied to compute the double-
difference geometric satellite-to-receiver distance. 



The dispersive (double-difference ionospheric delay for L1 in meters - સ∆ࡵ૚) and  
non-dispersive (double-difference geometric delay reflecting residual tropospheric delay, 
orbit errors, reference stations coordinates errors and etc., in meters - સ∆ࡳ) parts of the 
carrier phase residuals can by separated using the formulas: 
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2.3 Models of interpolation the distance-dependent biases 
  
On the basis of computed distance-dependent error between reference stations and 
precise known reference stations coordinates, the spatial correction terms (separately 
for dispersive and non-dispersive parts) can by generated using one of the existing 
interpolations methods. 
 
2.3.1 Linear Interpolation Algorithm (LIA) 
 
LIA algorithm, also called Distance-based linear Interpolation Method (DIM) (Gao et 
al., 1997), allows to derive ionospheric delay (and geometric bias) for the master station - 
user station baseline (સ∆࢛,࢓ࡵ), as follows: 
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where n is the number of reference stations, dr,u is the distance between reference 
stations (r) and user stations (u) (the approximate coordinates of the user station must 
be known). સ∆࢘,࢓ࡵ is the double-differenced ionospheric delay for pair: master reference 
station (m) – rth reference station. LIA needs at least three reference stations. 
 
2.3.2 Linear Interpolation Method (LIM) 
 
LIM method proposed by Wanniger (Wanniger, 1995) and extended by Wübbena et al. 
(Wübbena et al., 1996) describes distance-dependent biases as a two parameters plane 
model, where variables a and b, so-called network coefficients, estimates for north and 
east gradient. The correction from the master to user can be describe as: 
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where Δxm,u and Δym,u are the plane coordinate differences that refer to master reference 
station (m) and user station (u). At least three reference stations are needed to compute 
the network coefficients; if the number of reference stations is bigger than three, the 
coefficients can be estimate by a least-square adjustment: 



  ቂࢇ
ቃ࢈ ൌ ൫࡭ࢀ࡭൯ି૚࡭     ,ࢂࢀ࡭ ൌ

ۏ
ێ
ێ
ۍ

૚,࢓࢞∆ ૚,࢓࢟∆
૛,࢓࢞∆ ૛,࢓࢟∆

ڭ
૚ି࢔,࢓࢞∆

ڭ
ے૚ି࢔,࢓࢟∆

ۑ
ۑ
ې

ࢂ    , ൌ

ۏ
ێ
ێ
ۍ

સ∆࢓ࡵ,૚
સ∆࢓ࡵ,૛

ڭ
સ∆ି࢔,࢓ࡵ૚ے

ۑ
ۑ
ې
  (13)  

where subscript 1,2,..,n denotes number of reference stations. 
 
Some variety of LIM is Weighted Linear Interpolation Method (WLIM), which is a 
standard interpolation method of Trimble software (Chen et al., 2003). In this method 
the distance dependent biases weighted by the distance between reference stations and 
user station are used to calculate correction terms. Also an additional parameter c, 
estimates for constant part that represents the station-specific error, are used as opposed 
to LIM, which makes at least four reference stations are needed. The correction term of 
master-user baseline can be describe as: 
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2.3.3 Linear Combination Model (LCM) 
 
LCM method, proposed by Han and Rizos (Han and Rizos, 1996), describe spatial 
correlated errors between master reference station (m) and user stations (u) as linear 
combination of double-differenced biases between reference stations (r) and master 
reference station: 
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where α is the set of determined parameters and n is the number of reference stations. 
The parameters α are resolve with the following conditions: 
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where ࢄሬሬԦ࢛ and ࢄሬሬԦ࢘ are horizontal coordinates vector for the user and reference stations 
respectively. The parameters of linear combination are determined using equations: 
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LCM needs at least three reference stations and the parameters depend on the position 
of the user station and should be recalculated on epoch-by-epoch in kinematic 
applications. 
 
2.3.4 Low-order Surface Model (LSM) 
 
LSM method uses a low-order surface to fit the spatial correlated biases in network of 
reference stations. As a variables are used 2D (horizontal) or 3D spatial (horizontal and 
altitude) coordinates. First or second order fitting function is used. The number of 
reference stations (n) needed to resolve depends on the number of coefficients (l) of 
LSM: n=l+1. Some function are (Fotopoulos and Cannon, 2000): 
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2.3.5 Partial Derivative Algorithm (PDA) 
 
The concept of PDA uses a first and second order partial derivative of GPS 
measurement error function to model spatially correlated errors (Varner and Cannon, 
1997; Fotopoulos and Cannon, 2001), as follow: 
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where g is GPS measurement error function expanded in Taylor series. In practice, 
based on distance-dependent error between reference stations, the coefficients equal 
first-order partial derivative with respect to the horizontal coordinates (β, γ) and 
altitude (δ) are computed. Also second-order partial derivative with respect to altitude 
(ε), which takes into consideration the nonlinear effects in the vertical direction due to 
ionosphere and troposphere is used.  The constant coefficient (α) describe the station-
specific error at master station. The model for the dispersive bias describe the 
expression:  
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in which nonlinear effects in the horizontal directions are omitted. 
 
2.3.6 Least-Squares Collocation (LSC) 
 
LSC method is used to interpolate some value at any given location using known 
covariance between interpolated and measurement values. The interpolation equation 
can be written (Dai et al., 2001): 

  ෡ࢁ ൌ ࢛࢜࡯ · ࢜࡯
ି૚ ·  ࢂ (25)  

where ࢁ෡  denotes interpolated vector, Cv is the covariance matrix of the measurement 
vector V, and Cuv is the cross-covariance matrix between interpolated and measurement 
vector. 
To obtain the optimal estimator of interpolated values, the measurement (distance-
dependent biases) must satisfy the condition of normal distribution and zero mean 
(Raquet and Lachapell, 2001). In practice, the interpolation equations for ionospheric 
biases is presented (Odijk et al., 2000): 
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where: subscript r=1, 2, … n denotes reference stations (r=1 is the master station) and u 
is the user station; superscript s=k,l denotes satellites (k is the reference satellite). The 
covariance function C ja,b is linearly dependent on the ionospheric pierce points: 
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Fig. 1. Reference station test network. 

 
 

Fig. 2.  Sky plot for the test network, 14 

February 2001, 21.30 – 23.30 UT. 

  

The two hours (21.30 – 23.30 UT) of GPS dual frequency phase and code data was 

collected on 14 February 2011 (during that time the ionosphere was active with Kp 

index of 4).  A 10 seconds sampling rate and 15° elevation cut-off was used in 

experiment. Figure 3 shows the sky plot during the test period (bold line marks 

reference satellite). 

 

Figures 4 and 5 shows the true value of double-difference ionospheric (for L1 in meters) 

and geometric (in meters) biases for all satellites (related to reference satellite) for 

BYDG-TORU baseline. Using the interpolation algorithms described by formulas: (9), 

(12), (14), (15), (21), (24), (26) the estimate ionospheric and geometric biases (correction 

terms) were computed. Table 1 shows the results (RMS, mean and range values) for the 

different interpolation methods for ionospheric and geometric biases. The first column 

(raw) shows the true biases and the next columns the biases after the correction terms 

have been applied. The LSC method was use only to interpolate the ionospheric delay.     

 



 
 

Fig. 3. DD ionospheric delay time series for 

BYDG-TORU – true value. 
 

 
 

Fig. 4. DD geometric bias time series for 

BYDG-TORU – true value. 
 

 
 

Fig. 5. DD ionospheric delay time series for 

BYDG-TORU – with the LCM. 

 
 

Fig. 6. DD geometric bias time series for 

BYDG-TORU – with the LCM. 

 

 

Table 1.  Statistic for ionospheric and geometric biases before and after the different 

correction terms were applied 

 RAW LIA LIM WLIM LCM LSM PDA LSC 

DD 

L1 

Iono 

Delay 

RMS [mm] 0.030 0.020 0.015 0.016 0.015 0.017 0.016 0.015 

Mean [mm] 0.010 -0.009 0.000 -0.005 -0.004 -0.004 -0.005 -0.005 

Range [mm] 0.193 0.131 0.112 0.105 0.100 0.108 0.102 0.108 

DD 

Geom 

Delay 

RMS [mm] 0.013 0.011 0.011 0.010 0.010 0.012 0.010 - 

Mean [mm] 0.002 0.004 0.000 0.002 0.002 0.003 0.002 - 

Range [mm] 0.101 0.079 0.093 0.078 0.077 0.083 0.078 - 

 

It can be seen from Table 1 that all the interpolation algorithms significantly mitigate 

the ionospheric delay (by about 50%). Only the LIA method gives slightly worse results 

(by about 30%). The geometric biases did not exceed (after applying a’priori 

troposphere model) ±5cm (see Fig. 5) and can be considered that they reflect the 

measurement noise and residual multipath delay. Therefore after applying the 

correction terms the biases (and RMS) are slightly reduced. Figures 6 and 7 show the 

distance-dependent errors for BYGD-TORU baseline after applying the LCM (the 

smallest RMS values). 

 

The dispersive and non-dispersive correction terms were also used to mitigate the 

distance-dependent biases in the double-differenced carrier phase residuals. Table 2 

shows reduction of RMS value (in percentage terms) for carrier phase residuals after 

using tested interpolation algorithms. The LSC method was used only to model the 

ionospheric delay thus the geometric biases computed by LIM was used to determinate 



spatial correction terms for carrier phase residuals. It can be seen that reduction of 

RMS values for all using algorithms, except LIA method, are very close. In the Figures 8 

and 9 the L1 double-differenced carrier phase residuals before and after applying the 

LIM correction terms are presented. 

 

Table 2. The reduction of RMS value for L1 and L2 DD residuals 

 DD L1 DD L2 

LIA 14.2% 22.1% 

LIM 53.8% 55.1% 

WLIM 33.8% 39.8% 

LCM 38.0% 43.8% 

LSM 33.9% 39.8% 

PDA 36.4% 42.1% 

LSC+LIM 46.1% 50.4% 

 

 

 
 

Fig. 7. DD L1 residuals time series for 

BYDG-TORU – true value. 

 

 
 

Fig. 8. DD L1 residuals time series for 

BYDG-TORU – with the LIM. 

 

An important threshold of remaining ionospheric biases after correction terms applied 

is 8cm. If the biases are larger than these threshold the ambiguity determination will 

take significantly longer (Landau et al., 2003). For the test baseline 96.9% of ionospheric 

biases were less than the threshold before and 100% after the correction terms applied 

for all tested models.   

 

4. CONCLUSIONS 

 

In this paper the algorithm of generation the spatial correction terms - especially the 

methodology of interpolation of the distance-dependent biases have been reviewed in 

detail. The performance of described algorithms were tested using the reference station 

test network consisting of nine GPS stations. The numerical results shows that all tested 

methods significantly mitigate ionospheric and geometric biases for master station – 

user station baseline. The reduction of RMS value for L1 and L2 double-differenced 

carrier phase residuals for all algorithms are very close, except LIA method which gives 

slightly worse results. Also each of tested models reduced all the ionospheric biases to 

the threshold of 8cm. 
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