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1. INTRODUCTION

Today the Network — based Real Time Kinematic (Network RTK) technique is the most
accurate relative GNSS kinematic positioning in real-time. Also in Poland the multiple
reference stations network ASG-EUPOS which is a part of European Position
Determination System (Bosy et al.,, 2008) provides the real-time data to use this
technique. The basic idea of Network RTK is to use the network of reference stations to
determinate the distance-dependent errors: ionospheric and geometric (tropospheric,
orbital) biases. The biases can be used to generate the spatial correction terms and
reduce the distance-dependent errors between the reference station and user receiver.
This allows, within the coverage of the reference stations network, to fix carrier phase
ambiguities and achieve cm-level positioning accuracy for up to S0km baseline (Rizos,
2002).

One of the most important issues for Network RTK techniques is how to estimate the
ionospheric and geometric biases for the user’s location. In this paper, several
interpolation methods are reviewed in details. The formulas of each of these methods as
well as the numerical results for the test network (part of the ASG-EUPOS network) are
also presented.

2. METHODOLOGY FOR SPATIAL CORRECTION TERMS GENERATION

The main steps of spatial correction terms algorithm can be describe as follows:
e to fix the double-differenced carrier phase ambiguities between the reference
stations (which coordinates are well known);
e to determinate the distance-dependent biases (dispersive/ionospheric and non-
dispersive/geometric biases between reference stations;
e to interpolate the distance-dependent biases for the user’s receiver location.

2.1 Ambiguity resolution between reference stations

Double-differenced carrier phase ambiguity resolution between reference stations is the
first step to determinate spatial correlated errors. The length of baseline between
reference stations on test area is up to 50km so ambiguity determination follows a
wide lane/narrow lane (Ls/L3;) approach (Mervart, 1995; Chen et al., 2000). In these
approach double-differenced wide lane (Ls) ambiguity was resolved at first using



“Melbourne-Wiibbena” phase-code combination (Melbourne, 1985; Wiibbena, 1985;
Hofmann-Wellenhof et al., 2008):
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where @y is the carrier phase observable in cycles; Py is code pseudorange observables;
fi is the frequency of the carrier wave; VA¢, is the double-difference carrier phase
observable in cycles; VAN, is the double-difference integer ambiguity.

The Melbourne-Wiibbena double-difference phase-code combination cancels out all bias
terms in the observation equations (ionospheric and tropospheric delay, ephemeris
errors) except integer ambiguity parameter. It allows to resolve wide lane integer
ambiguity without a’priori models of biases.

In the second step the ionosphere-free phase combination:
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where VAp is the double-difference geometric satellite-to-receiver distance and VAT is
the double-difference tropospheric delay (computed from tropospheric model). The
effective wavelength of L; in equation (4) is 10.7cm like in narrow lane combination. In
the end the L, integer ambiguity can be derived as:

VAN, = VAN, — VAN, )

In order to estimate float ambiguity (VAIV) as well as covariance matrix (Qy,y), the
Kalman filter was used. The Least-squares AMBiguity Decorrelation Adjustment
(LAMBDA) method (Teunissen, 1995) and Modified LAMBDA method (Chang et al.,
2005) were applied to fix ambiguity with ratio test (more than 3.0) as a threshold of
validation. Cycle slips were detected and repaired using discontinuities in the double-
differenced ionospheric residuals.

2.2 Distance-dependent biases between reference stations

After solving out the double-differenced integer ambiguity for L; and L, frequencies
between reference stations, the double-differenced carrier phase residuals (VA¢,) can
be obtained, as follows:

VAQ, = VA, — % (VAp + VAT) — VAN, (6)

The double-differenced tropospheric delay was computed using Saastamoinen model
(Saastamoinen, 1973) with a standard atmosphere parameters and Niell mapping
functions for wet and dry components (Niell, 1996). Final precise ephemerides from
International GNSS Service (IGS) and relative antenna calibrations from National
Geodetic Survey (NGS) (Mader, 1999) also were applied to compute the double-
difference geometric satellite-to-receiver distance.



The dispersive (double-difference ionospheric delay for L; in meters - VAI;) and
non-dispersive (double-difference geometric delay reflecting residual tropospheric delay,
orbit errors, reference stations coordinates errors and etc., in meters - VAG) parts of the
carrier phase residuals can by separated using the formulas:
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2.3 Models of interpolation the distance-dependent biases

On the basis of computed distance-dependent error between reference stations and
precise known reference stations coordinates, the spatial correction terms (separately
for dispersive and non-dispersive parts) can by generated using one of the existing
interpolations methods.

2.3.1 Linear Interpolation Algorithm (LIA)
LIA algorithm, also called Distance-based linear Interpolation Method (DIM) (Gao et

al., 1997), allows to derive ionospheric delay (and geometric bias) for the master station -
user station baseline (VAL ,,), as follows:
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where n is the number of reference stations, d,, is the distance between reference
stations (r) and user stations (#) (the approximate coordinates of the user station must
be known). VAL, .. is the double-differenced ionospheric delay for pair: master reference
station (m) — r'™ reference station. LIA needs at least three reference stations.

2.3.2 Linear Interpolation Method (LIM)

LIM method proposed by Wanniger (Wanniger, 1995) and extended by Wiibbena et al.
(Wiibbena et al., 1996) describes distance-dependent biases as a two parameters plane
model, where variables a and b, so-called network coefficients, estimates for north and
east gradient. The correction from the master to user can be describe as:
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where Ax,,, and Ay, are the plane coordinate differences that refer to master reference
station (m) and user station (u). At least three reference stations are needed to compute
the network coefficients; if the number of reference stations is bigger than three, the
coefficients can be estimate by a least-square adjustment:
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where subscript 1,2...,n denotes number of reference stations.

Some variety of LIM is Weighted Linear Interpolation Method (WLIM), which is a
standard interpolation method of Trimble software (Chen et al., 2003). In this method
the distance dependent biases weighted by the distance between reference stations and
user station are used to calculate correction terms. Also an additional parameter c,
estimates for constant part that represents the station-specific error, are used as opposed
to LIM, which makes at least four reference stations are needed. The correction term of
master-user baseline can be describe as:
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2.3.3 Linear Combination Model (LCM)

LCM method, proposed by Han and Rizos (Han and Rizos, 1996), describe spatial
correlated errors between master reference station (m) and user stations (u) as linear
combination of double-differenced biases between reference stations (r) and master
reference station:
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where « is the set of determined parameters and n is the number of reference stations.
The parameters « are resolve with the following conditions:
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where X, and X, are horizontal coordinates vector for the user and reference stations
respectively. The parameters of linear combination are determined using equations:
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LCM needs at least three reference stations and the parameters depend on the position
of the user station and should be recalculated on epoch-by-epoch in kinematic
applications.

2.3.4 Low-order Surface Model (LSM)

LSM method uses a low-order surface to fit the spatial correlated biases in network of
reference stations. As a variables are used 2D (horizontal) or 3D spatial (horizontal and
altitude) coordinates. First or second order fitting function is used. The number of
reference stations (7) needed to resolve depends on the number of coefficients (/) of
LSM: n=I/+1. Some function are (Fotopoulos and Cannon, 2000):
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2.3.5 Partial Derivative Algorithm (PDA)

The concept of PDA uses a first and second order partial derivative of GPS
measurement error function to model spatially correlated errors (Varner and Cannon,
1997; Fotopoulos and Cannon, 2001), as follow:
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where g is GPS measurement error function expanded in Taylor series. In practice,
based on distance-dependent error between reference stations, the coefficients equal
first-order partial derivative with respect to the horizontal coordinates (#, y) and
altitude (J) are computed. Also second-order partial derivative with respect to altitude
(¢), which takes into consideration the nonlinear effects in the vertical direction due to
ionosphere and troposphere is used. The constant coefficient («) describe the station-
specific error at master station. The model for the dispersive bias describe the
expression:
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in which nonlinear effects in the horizontal directions are omitted.
2.3.6 Least-Squares Collocation (LSC)

LSC method is used to interpolate some value at any given location using known
covariance between interpolated and measurement values. The interpolation equation
can be written (Dai et al., 2001):

U=C,,-C,1-V (25)

where U denotes interpolated vector, C, is the covariance matrix of the measurement
vector V, and C,, is the cross-covariance matrix between interpolated and measurement
vector.

To obtain the optimal estimator of interpolated values, the measurement (distance-
dependent biases) must satisfy the condition of normal distribution and zero mean
(Raquet and Lachapell, 2001). In practice, the interpolation equations for ionospheric
biases is presented (Odijk et al., 2000):
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where: subscript r=1, 2, ... n denotes reference stations (r=1 is the master station) and u
is the user station; superscript s=k,/ denotes satellites (k is the reference satellite). The
covariance function C’, is linearly dependent on the ionospheric pierce points:



27)

where li,,,b is the distance between the ionospheric points (where the vectors satellite-
reference stations pierce an assumed infinitely thin ionospheric layer at 350km height
above the Earth surface, see Fig. 1) for stations a and b with respect to satellite j. /4, is
the distance larger than the longest distance between ionospheric pierce points:
Luax > V4 5. The presented algorithm assumes dependence of the covariance function on
distance between reference stations only and it is approximate approach.
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3. TESTING THE PERFORMANCE OF SPATIAL CORRECTION TERMS
GENERATION

To test how well the interpolation algorithms can approximate the real distance-
dependent biases the test network consisting of the nine ASG-EUPOS reference stations
was used (Fig. 2). The reference stations BYDG located in the middle of the test network
was used as a master reference station. The distance between master and other reference
stations is ca 70km. The station TORU was selected as the user station. The ionospheric
and geometric biases for the baseline BYDG-TORU (ca 45km) were not included in the
interpolation algorithms and were used as a frue values to verify the correction terms
performance. All calculation were performed by using the MATLAB scripts developed
by author.
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Fig. 1. Reference station test network. February 2001, 21.30 — 23.30 UT.

The two hours (21.30 — 23.30 UT) of GPS dual frequency phase and code data was
collected on 14 February 2011 (during that time the ionosphere was active with Kp
index of 4). A 10 seconds sampling rate and 15° elevation cut-off was used in
experiment. Figure 3 shows the sky plot during the test period (bold line marks
reference satellite).

Figures 4 and 5 shows the true value of double-difference ionospheric (for L; in meters)
and geometric (in meters) biases for all satellites (related to reference satellite) for
BYDG-TORU baseline. Using the interpolation algorithms described by formulas: (9),
(12), (14), (15), (21), (24), (26) the estimate ionospheric and geometric biases (correction
terms) were computed. Table 1 shows the results (RMS, mean and range values) for the
different interpolation methods for ionospheric and geometric biases. The first column
(raw) shows the true biases and the next columns the biases after the correction terms
have been applied. The LSC method was use only to interpolate the ionospheric delay.
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Fig. 5. DD ionospheric delay time series for ~ Fig. 6. DD geometric bias time series for
BYDG-TORU — with the LCM. BYDG-TORU — with the LCM.

Table 1. Statistic for ionospheric and geometric biases before and after the different
correction terms were applied

RAW LIA LIM WLIM LCM LSM PDA LSC

DD RMS [mm] 0.030 0.020 0.015 0.016 0.015 0.017 0.016 0.015
L1 Mean [mm]  0.010 -0.009 0.000 -0.005 -0.004 -0.004 -0.005 -0.005

lono
Delay Range [mm] 0.193 0.131 0.112 0.105 0.100 0.108 0.102 0.108

DD RMS[mm] 0013 0.011 0011 0.010 0.010 0.012 0.010 -
Geom Mean [mm] 0.002 0.004 0.000 0.002 0.002 0.003 0.002 -
Delay Range [nm] 0.101 0.079 0.093 0.078 0.077 0.083 0.078 -

It can be seen from Table 1 that all the interpolation algorithms significantly mitigate
the ionospheric delay (by about 50%0). Only the LIA method gives slightly worse results
(by about 30%). The geometric biases did not exceed (after applying a’priori
troposphere model) +5cm (see Fig. 5) and can be considered that they reflect the
measurement noise and residual multipath delay. Therefore after applying the
correction terms the biases (and RMS) are slightly reduced. Figures 6 and 7 show the
distance-dependent errors for BYGD-TORU baseline after applying the LCM (the
smallest RMS values).

The dispersive and non-dispersive correction terms were also used to mitigate the
distance-dependent biases in the double-differenced carrier phase residuals. Table 2
shows reduction of RMS value (in percentage terms) for carrier phase residuals after
using tested interpolation algorithms. The LSC method was used only to model the
ionospheric delay thus the geometric biases computed by LIM was used to determinate



spatial correction terms for carrier phase residuals. It can be seen that reduction of
RMS values for all using algorithms, except LIA method, are very close. In the Figures 8
and 9 the L; double-differenced carrier phase residuals before and after applying the
LIM correction terms are presented.

Table 2. The reduction of RMS value for L1 and L2 DD residuals

DDL1 DDL2

LIA 142%  22.1%
LIM 53.8%  55.1%
WLIM 33.8%  39.8%
LCM 38.0%  43.8%
LSM 33.9%  39.8%
PDA 36.4%  42.1%

LSC+LIM  46.1%  50.4%
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Fig. 7. DD L1 residuals time series for Fig. 8. DD L1 residuals time series for
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An important threshold of remaining ionospheric biases after correction terms applied
is 8cm. If the biases are larger than these threshold the ambiguity determination will
take significantly longer (Landau et al., 2003). For the test baseline 96.9% of ionospheric
biases were less than the threshold before and 100% after the correction terms applied
for all tested models.

4. CONCLUSIONS

In this paper the algorithm of generation the spatial correction terms - especially the
methodology of interpolation of the distance-dependent biases have been reviewed in
detail. The performance of described algorithms were tested using the reference station
test network consisting of nine GPS stations. The numerical results shows that all tested
methods significantly mitigate ionospheric and geometric biases for master station —
user station baseline. The reduction of RMS value for L1 and L2 double-differenced
carrier phase residuals for all algorithms are very close, except LIA method which gives
slightly worse results. Also each of tested models reduced all the ionospheric biases to
the threshold of 8cm.



REFERENCES

Bosy J., Oruba A., Graszka W., Leonczyk M., Ryczywolski M. (2008) ASG-EUPQOS densification
of EUREF Permanent Network on the territory of Poland. Reports on Geodesy, No. 2 (85)
2008, pp. 105-112.

Chang X.W., Yang X., Zhou T. (2005) MLAMBDA: A modified LAMBDA method for integer
least- squares estimation. J.Geodesy 79:552-565, 2005.

Chen X., Han S., Rizos C., Goh P.C. (2000) Improving real time positioning efficiency using the
Singapure integrated multiple reference station network (SIMRSN). Proceedings of the ION-
GPS 2000, Institute of Navigation, Sept. 19-22 2000, Salt Lake City, Utah.

Chen X., Landau H., Vollath U. (2003) New tool for network RTK integrity monitoring.
Proceedings of the ION-GPS 2003, Institute of Navigation, Portland, 1355-1360, 2003.

Dai L., Han S., Wang J., Rizos C. (2001) A study on GPS/GLONASS multiple reference station
techniques for precise real-time carrier phase-based positioning. Proceedings of the 10ON-
GPS 2001, Institute of Navigation, Sept. 11-14 2001, Salt Lake City, Utah, 392-403.

Fotopoulos G., Cannon M.E. (2000) Parameterization of carrier phase corrections based on a
regional network of reference stations. Proceedings of the ION-GPS 2000, Institute of
Navigation, Sept. 19-22 2000, Salt Lake City, Utah.

Fotopoulos G., Cannon M.E. (2001) An overview of multireference station methods for cm-level
positioning. GPS Solutions, Vol.4, No.3, pp.1-10, 2001.

Gao Y., Li Z, McLellan J.F. (1997) Carrier phase based regional area differential GPS for
decimeter-level positioning and navigation. 10™ Int. Tech. Meeting of the Satellite Div. of
the U.S. Institute of Navigation, Kansas City, Missouri, 16-19 September, 1305-1313, 1997.

Han S., Rizos C. (1996) GPS network design and error mitigation for real-time continuous array
monitoring systems. 9™ Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of
Navigation, Kansas City, Missouri, 17-20 September, 1827-1836, 1996.

Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008) GNSS Global Navigation Satellite
Systems: GPS, GLONASS, Galileo & more. Springer-Verlag, Wien, 2008.

Landau H., Vollath U., Chen X. (2003) Virtual reference stations versus broadcast solutions in
network RTK — advantages and limitations. Proceedings of GNNS 2003 — The European
Navigation Conference, Gratz, Austria, Apr. 22-25, 2003.

Mader G.L. (1999) GPS antenna calibration at national geodetic survey. GPS Solutions 3(1):50-
58, 1999.

Melbourne W. G. (1985). The case for ranging in GPS based geodetic systems. In Proceedings of
the First Inernational Symposium on Precise Positioning with the Global Positioning
System, Rockville, Maryland, USA, April 15-19. U.S. Dept. of Commerce. pp. 373-386.

Mervart L. (1995) Ambiguity resolution techniques in geodetic and geodynamic applications of
Global Positioning System. PhD Thesis, University of Berne, 1995.

Niell A.E. (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J
Geophys Res 101(B2):3227-3246, 1996.

Odijk D., Marel H., Song I. (2000) Precise GPS positioning by applying ionospheric corrections
from an active control network. GPS Solutions, Vol.3, No.3, pp 49-57, 2000.

Raquet J., Lachapelle G. (2001) RTK positioning with multiple reference stations. GPS World,
12(4), 48-53, 2001.

Rizos C. (2002) Network RTK Research and Implementation — A Geodetic Perspective. Journal of
Global Positioning Systems, Vol.1, No.2:144-150, 2002.

Saastamoinen J. (1973) Contributions to the theory of atmospheric refraction. Bulletin Géodésique
107(1):13-34, 1973.

Teunissen P. (1995) The least-square ambiguity decorrelation adjustment: a method for fast GPS
ambiguity estimation. J.Geodesy 70:65-82, 1995.

Varner C., Cannon, M.E. (1997) The application of multiple reference stations and the
determination of multipath and spatially decorrelating errors. In Proceedings of ION-NTM-
97, Santa Monica, California, (pp. 323-333).



Wanninger L. (1995) Improved ambiguity resolution by regional differential modeling of the
ionosphere. 8" Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of Navigation,
Palm Springs, California, 12-15 September, 55-62, 1995.

Wiibbena G. (1985). Software Developments for Geodetic Positioning with GPS Using TI 4100
Code and Carrier Measurements. in C. Goad (Ed.), Proceedings First International
Symposium on Precise Positioning with the Global Positioning System. U.S. Department of
Commerce, Rockville, Maryland. pp. 403-412.

Wiibbena G., Bagge A., Seeber G., Boder V., Hankemeier P. (1996) Reducing distance dependent
errors for real-time precise DGPS applications by establishing reference station networks. 9™
Int. Tech. Meeting of the Satellite Div. of the U.S. Institute of Navigation, Kansas City,
Missouri, 17-20 September, 1845-1852, 1996.



	49a.pdf
	49b.pdf

