PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studying permafrost by integrating satellite and in situ data in the northern high‑latitude regions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is an exceptional opportunity of achieving simultaneous and complementary data from a multitude of geoscience and environmental near-earth orbiting artificial satellites to study phenomena related to the climate change. These satellite missions provide the information about the various phenomena, such as sea level change, ice melting, soil moisture variation, temperature changes and earth surface deformations. In this study, we focus on permafrost thawing and its associated gravity change (in terms of the groundwater storage), and organic material changes using the gravity recovery and climate experiment (GRACE) data and other satellite- and ground-based observations. The estimation of permafrost changes requires combining information from various sources, particularly using the gravity field change, surface temperature change, and glacial isostatic adjustment. The most significant factor for a careful monitoring of the permafrost thawing is the fact that this process could be responsible for releasing an additional enormous amount of greenhouse gases emitted to the atmosphere, most importantly to mention carbon dioxide (CO2) and methane that are currently stored in the frozen ground. The results of a preliminary numerical analysis reveal a possible existence of a high correlation between the secular trends of greenhouse gases (CO2), temperature and equivalent water thickness (in permafrost active layer) in the selected regions. Furthermore, according to our estimates based on processing the GRACE data, the groundwater storage attributed due to permafrost thawing increased at the annual rates of 3.4, 3.8, 4.4 and 4.0 cm, respectively, in Siberia, North Alaska and Canada (Yukon and Hudson Bay). Despite a rather preliminary character of our results, these findings indicate that the methodology developed and applied in this study should be further improved by incorporating the in situ permafrost measurements.
Czasopismo
Rocznik
Strony
721--734
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Faculty of Engineering and Sustainable Development, University of Gävle, SE‑80176 Gävle, Sweden
  • Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), SE‑10044 Stockholm, Sweden
  • Faculty of Engineering and Sustainable Development, University of Gävle, SE‑80176 Gävle, Sweden
  • Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), SE‑10044 Stockholm, Sweden
  • Faculty of Engineering and Sustainable Development, University of Gävle, SE‑80176 Gävle, Sweden
  • Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), SE‑10044 Stockholm, Sweden
  • Department of Land Surveying and Geo‑Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
Bibliografia
  • 1. Ågren J, Svensson R (2007) Postglacial land uplift model and system definition for the new Swedish height system RH 2000. Reports in geodesy and geographical information systems, LMV-Rapport:4. Lantmäteriet, Gävle, Sweden
  • 2. Bevis M, Melini D, Spada G (2016) On computing the geoelastic response to a disk load. Geophys J Int 205(3):1804–1812. https://doi.org/10.1093/gji/ggw115
  • 3. Biskaborn BK, Lanckman JP, Lantuit H, Elger K, Streletskiy DA, Cable WL, Romanovsky VE (2015) The global terrestrial network for permafrost database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution. Earth Syst Sci Data Discuss 8:279–315
  • 4. Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (1998) Circum-Arctic map of permafrost and ground-ice conditions. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media
  • 5. Brown J, Hinkel KM, Nelson FE (2000) The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr 24:165–258
  • 6. Chao BF, Wu YH, Zhang Z, Ogawa R (2011) Gravity bariation in Siberia: GRACE observation and possible causes. Terr Atmos Ocean Sci 22:149–155. https://doi.org/10.3319/tao.2010.07.26.03(tibxs)
  • 7. Chen F, Mitchell K, Schaake J, Xue Y, Pan H, Koren V, Duan Y, Ek M, Betts A (1996) Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101(D3):7251–7268
  • 8. Ekman M (1991) A concise history of postglacial land uplift research (from its beginning to 1950). Terra Nova 3:358–365
  • 9. Farrell WE (1972) Deformation of the Earth by surface loading. Rev Geophys 10:761–797
  • 10. Frauenfeld OW, Zhang T, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res. https://doi.org/10.1029/2003jd004245
  • 11. French HM (2013) The periglacial environment. John Wiley & Sons, Hoboken
  • 12. Han S-C, Shum CK, Jekeli C, Kuo C-Y, Wilson C, Seo K-W (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163:18–25. https://doi.org/10.1111/j.1365-246x.2005.02756
  • 13. Huang Z (2013) The role of glacial isostatic adjustment (GIA) process on the determination of present-day sea-level rise. Report No. 504. Geodetic Science The Ohio State University Columbus, Ohio. 43210 October
  • 14. Hugelius G, Virtanen T, Kaverin D, Pastukhov A, Rivkin F, Marchenko S, Romanovsky V, Kuhry P (2011) High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. J Geophys Res Biogeosci 116:G03024. https://doi.org/10.1029/2010JG001606
  • 15. Joud SM, Sjöberg LE, Bagherbandi M (2017) Use of GRACE data to detect the present land uplift rate in Fennoscandia. Geophys J Int 209(2):909–922. https://doi.org/10.1093/gji/ggx063
  • 16. Khan SA, Kjær KH, Bevis M, Bamber JL, Wahr J, Kjeldsen KK, Bjørk AA, Korsgaard NJ, Stearns LA, van den Broeke MR, Liu L, Larsen NK, Muresan IS (2014) Sustained mass loss of the Northeast Greenland ice sheet triggered by regional warming. Nat Clim Chang 4:292–299. https://doi.org/10.1038/nclimate2161
  • 17. Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175:417–432. https://doi.org/10.1111/j.1365-246x.2008.03922.x
  • 18. Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19585
  • 19. Koven DC, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. PNAS2011 108(36):14769–14774. https://doi.org/10.1073/pnas.1103910108
  • 20. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geodesy 81(11):733–749
  • 21. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geodesy. https://doi.org/10.1007/s00190-009-0308-3
  • 22. Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG (2015) Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ Res Lett. https://doi.org/10.1088/1748-9326/10/9/094011
  • 23. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, et al. (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al. (eds) Climate change 2007: the physical science asis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA
  • 24. Lemoine FG, Luthcke SB, Rowlands DD, Chinn DS, Klosko SM, Cox CM (2007) The use of mascons to resolve time-variable gravity GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools. Springer, Berlin, pp 231–236. ISBN 978-3-540-49349-5
  • 25. Liu L, Zhang T, Wahr J (2010) InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. J Geophys Res 115:F03023. https://doi.org/10.1029/2009jf001547
  • 26. Moore P, Zhang Q, Alothman A (2005) Annual and semiannual variations of the Earth’s gravitational field from satellite laser ranging and CHAMP. J Geophys Res. https://doi.org/10.1029/2004jb003448
  • 27. Muskett RR, Romanovsky VE (2009) Groundwater storage changes in Arctic permafrost watersheds from GRACE and in–situ measurements. Environ Res Lett 4(4):045009
  • 28. Muskett RR, Romanovsky VE (2011) Alaskan permafrost groundwater storage changes derived from grace and ground measurements. Remote Sens 3:378–397. https://doi.org/10.3390/rs3020378
  • 29. Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res. https://doi.org/10.1029/2006jf0005788
  • 30. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, invited paper. Ann Rev Earth Planet Sci 32:111–149
  • 31. Peltier WR, Argus DF (2015) Drummond, R. Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C VM5a model. J Geophys Res Solid Earth 120:450–487. https://doi.org/10.1002/2014jb011176
  • 32. Phillips M, Springman SM, Arenson LU (eds) (2003) Proceedings of the eighth international conference on permafrost, Zurich, Switzerland, 21–25 July, vol 1 and 2. A.A. Balkema, Lisse, The Netherlands, 1319 p
  • 33. Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett. https://doi.org/10.1029/2004GL020873
  • 34. Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63:165–180. https://doi.org/10.1111/j.1600-0889.2011.00527.x
  • 35. Schaefer K, Lantuit H, Romanovsky V, Schuur EAG (2012) Policy implications of warming permafrost. United Nations Environment Programme Special Report, Nairobi, Kenya, p 50
  • 36. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559
  • 37. Shabanloui A, Müller J (2015) Mass variations in the siberian permafrost region based on new GRACE results and auxiliary modeling. In: International association of geodesy symposia. Springer International Publishing Switzerland. https://doi.org/10.1007/1345_2015_186
  • 38. Sjöberg LE, Bagherbandi M (2017) Gravity inversion and integration: theory and applications in geodesy and geophysics. Springer, Berlin
  • 39. Sjöberg Y, Frampton A, Lyon S (2013) Using streamflow characteristics to explore permafrost thawing in northern Sweden. Hydrogeol J 21(1):121–131. https://doi.org/10.1007/s10040-012-0932-5
  • 40. Smith NV, Saatchi SS, Randerson T (2004) Trends in high latitude soil freeze and thaw cycles from 1988 to 2002. J Geophys Res. https://doi.org/10.1029/2003jd004472
  • 41. Steffen H, Müller J, Peterseim N (2012) Mass variations in the Siberian permafrost region from GRACE. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth, vol 136. Springer, Berlin, pp 597–603
  • 42. Sun W, Sjöberg LE (1999) Gravitational potential changes of a spherically symmetric earth model caused by a surface load. Geophys J Int 137:449–468
  • 43. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. https://doi.org/10.1029/2005gl025285
  • 44. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res 39:1223. https://doi.org/10.1029/2002wr001808
  • 45. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. https://doi.org/10.1029/2004GL019920
  • 46. Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control co2 and ch4 production in Alaskan permafrost peats. Glob Chang Biol 20(8):2674–2686. https://doi.org/10.1111/gcb.12572
  • 47. Velicogna I, Tong J, Zhang T, Kimball JS (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena river basin, Eurasia, detected from GRACE. Geophys Res Lett. https://doi.org/10.1029/2012gl051623
  • 48. Vey S, Steffen H, Müller J, Boike J (2013) Inter-annual water mass variations from GRACE in central Siberia. J Geodesy 87(3):287–299
  • 49. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229
  • 50. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31(11):L11501. https://doi.org/10.1029/2004GL019779
  • 51. Wouters B, Schrama EJO (2007) Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics. Geophys Res Lett 34:L23711. https://doi.org/10.1029/2007gl032098
  • 52. Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. https://doi.org/10.1029/2009jd012974
  • 53. Yang Z, Gao J, Zhao L, Xu X, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet plateau. Plant Soil 367(1–2):687–700. https://doi.org/10.1007/s11104-012-1511-1
  • 54. Zech M, Zech R, Zech W, Glaser B, Brodowski S, Amelung W (2008) Haracterisation and palaeoclimate of a loess-like permafrost palaeosol sequence in NE Siberia. Geoderma 143:281–295
  • 55. Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C et al (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:1–9. https://doi.org/10.1029/2004jd005642
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74ad2660-040d-462d-ba69-1aa4782c9a59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.