PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie sił tłumiących występujących w prostych układach MEMS

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Modelling of damping forces occuring in simple MEMS systems
Języki publikacji
PL
Abstrakty
PL
W mikroukładach mechanicznych określanych skrótem MEMS występują pewne siły tłumiące. Na etapie projektowania układów tego typu wartości tych sił muszą zostać dokładnie oszacowane. Jak ukazane zostanie w niniejszej pracy, w układach pracujących z niskimi częstotliwościami najważniejszą siłą będzie siła lepka związana z wypływaniem filmu powietrznego spod pracujących płytek układów. Siłę tę można z dużą dokładnością szacować metodami analitycznymi znanymi z literatury. Wponiższej pracy ukazane zostaną znane rozwiązania analityczne stosowane często w praktyce dla prostych płytek. Wykonane zostaną również proste symulacje zarówno z wykorzystaniem opisanych rozwiązań analitycznych, jak i z użyciem specjalistycznego programu o nazwie Comsol Multiphysics. Przeprowadzone badania analityczno-numeryczne wykażą skuteczność oprogramowania numerycznego.
EN
A certain damping force occurs in the micro-mechanical systems referred as MEMS. At the design stage of such systems, these forces must be accurately estimated. As shown in this work, in all systems operating at low frequencies, most important force is the one associated with the flotation of air film from the volume between two parallel operating movable MEMS plates. This force can be accurately estimated by analytical methods known from the literature. The paper presents analytical solutions that are frequently used in practice for simple plates. Also some simple simulations, using all described analytical solutions compared with the results of specialized program called Comsol Multyphysics, are shown. Presented research demonstrate the effectiveness of numerical software.
Rocznik
Strony
165--189
Opis fizyczny
Bibliogr. 31 poz., wykr., rys.
Twórcy
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Inżynierii Mechanicznej i Mechatroniki, Katedra Mechaniki i Podstaw Konstrukcji Maszyn, 70-310 Szczecin, Al. Piastów 19
Bibliografia
  • [1] Tilmans H.A., Elwespoek M., Fluitman J.H., Micro resonant force gauges, Sensors Actuators A, 30, 1992, 35-53.
  • [2] Hamrock B.J., Schmid S.R., Jacobson B.O., Fundamentals of Fluid Film Lubrication, second edition, CRC Press, 2004.
  • [3] Bao M.H., Micro Mechanical Transducers-Pressure Sensors, Accelerometers and Gyroscopes, Chapter 3, Elsevier, Amsterdam, 2000.
  • [4] Bao M.H., Analysis and Design Principles of MEMS Devices, Chapter 3, Elsevier, Amsterdam, 2005.
  • [5] Bao M., Yang H., Squeeze film air damping in MEMS, Sensors Actuators A, 136, 2007, 3-27.
  • [6] Khonsari M.M., Booser E.R., Applied Tribology, Wiley, New York, 2001.
  • [7] Reynolds O., On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil, Phil. Trans. R. Soc. Lond. January 1, 177, 1886, 157-234.
  • [8] Tipei N., Theory of lubrication, with applications to liquid- and gas-film lubrication, Stanford University Press, 1962.
  • [9] Langlois W.E., Isothermal squeeze films, Quart. Appl. Math., XX (2), 1962, 131-150.
  • [10] White F.M., Viscous Fluid Flow, McGraw-Hill Book Company, 1974.
  • [11] Blech J.J., On isothermal squeeze films, ASME J. Lubric. Technol., 105, 1983, 615-620.
  • [12] Darling R., Hivick C., Xu J., Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green’s function approach, Sens. Actuators A, 70, 1998, 32-41.
  • [13] Griffin W.S., Richarson H.H., Yamanami S., A study of squeeze film damping, ASME J. Basic Eng., 88, 1966, 451-456.
  • [14] Mohite S.S. et al., A Compact Squeeze — Film Model Including Inertia, Compressibility, and Rarefaction Effects for Perforated 3-D MEMS Structures, Journal of MEMS, 17 (3), June, 2008, 709-723.
  • [15] Houlihan R., Kraft M., Modelling squeeze film effects in a MEMS accelerometer with a levitated proof mass, J. of Micromech. and Microeng., 15, 2005, 893-902.
  • [16] Bao et al., Modified Reynolds’ equation and analytical analysis of squeeze-film air damping of perforated structures, J. of Micromech. and Microeng., 13, 2003, 795-800.
  • [17] Ostertgaard D., Mehner J., Using a heat transfer analogy to solve for squeeze film damping and stiffness coefficients in MEMS structures, January 23, 2003, online reference: http://ansys.net/papers/mems/mems-thermal-analogy-fsi-damping.pdf.
  • [18] Li P. et al., A new model for squeeze-film damping of electrically actuated microbeams under the effect of a static deflection, J. of Micromech. and Microeng., 17 (7), July 2007, 1242-1251.
  • [19] Wibbeler J. et al., Development of Ansys/Multyphisics Modules for MEMS by CAD-FEM GmbH, 19th CAD-FEM Users Meeting 2001 — International Congress on FEM Technology, October 17-19, 2001, Berlin, online reference: http://www.technet-alliance.com/uploads/tx_caeworld/UM2001_MEMS_1_wibbeler_217_226.pdf.
  • [20] Hyvarinen J., Soderkvist J., Dynamic analysis of MEMS devices with moving parts using ANSYS and LINFLOW, 2006, online reference: http://www.anker-zemer.com/MEMS_moving_ANSYS_LINFLOW_2006.pdf.
  • [21] Pandey A.K. et al., Analytical solution of the modified Reynolds equation for squeeze film damping in perforated MEMS structures, Sensors and Actuators A, 135, 2007, 839-848.
  • [22] Nigro S. et al., Evaluation of Squeeze-film Damping Effects in MEMS Perforated Plates, Proceedings of 8th IASME /WSEAS International Conference on Fluid Mechanics & Aerodynamics (FMA 2010), Taipei, Taiwan, 2010, 314-319.
  • [23] Suijlen M.A.G. et al., Squeeze film damping in the free molecular flow regime with full thermal accommodation, Sensors and Actuators A, 156, 2009, 171-179.
  • [24] Kaya T. et al., Design of a MEMS Capacitive Comb-drive Accelerometer, Proceedings of 2011 Comsol Conference, Boston, October 13-15, 2011.
  • [25] Silva M.G., Deshpande M., Greiner K., Gilbert J.R., Gas damping and spring effects on MEMS devices with multiple perforations and multiple gaps, Proceedings of the 10th International Conference on Solidstate Sensors and Actuators (Transducers’99), Sendai, 1999, 1148-1151.
  • [26] Berny A., Substrate Effects in Squeeze Film Damping of Lateral Parallel-Plate Sensing MEMS Structures, University of California at Berkeley, online reference, 2001.
  • [27] Rocha L.A. et al., Experimental verification of squeezed-film damping models for MEMS, Proceedings of the 16th MME MicroMechanics Europe Workshop, Gotenburg, Sweden, September 4-6, 2005, 244-247.
  • [28] Veijola T., Lehtovuori A., Numerical and compact modelling of squeeze-film damping in RF MEMS resonators, Proceedings of the symposium on design, test, integration and packaging of MEMS/MOEMS, April 9-11, 2008, 222-228.
  • [29] Veijola T., Raback P., Methods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver, Sensors 2007, 7, 2007, 1069-1090.
  • [30] Marrero V. et al., On Squeeze Film Damping in Microsystems, Journal of Tribology, 132 (3), July 2010.
  • [31] Lai Y.G., Przekwas A., A Finite volume method for fluid flow simulations with moving boundaries, J. Computat. Fluid Dyn., 2, 1994, 19-40.
Uwagi
PL
Praca naukowa finansowana ze środków na naukę w latach 2010-2014 jako projekt badawczy o numerze: N N503 319039.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74a66f0d-4817-4a02-a6a5-d8caf5899682
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.