PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Explicit Characterization of Admissible Linear Estimators of Fixed and Random Effects in Balanced Random Models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A necessary and sufficient conditions for a linear estimator of a linear function of fixed and random effects in a balanced random model to be admissible are given. The formulae for admissible estimators depend on certain coefficients from the interval [0, 1], as in well-known results for other models (see e.g. Cohen [3]).
Rocznik
Strony
105--118
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
  • Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
  • Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] J. K. Baksalary and A. Markiewicz, Admissible linear estimators in the general Gauss-Markov model, J. Statist. Plann. Inference 19 (1988), 349-359.
  • [2] J. K. Baksalary, A. Markiewicz and C. R. Rao, Admissible linear estimation in the general Gauss-Markov model with respect to an arbitrary quadratic risk function, J. Statist. Plann. Inference 44 (1995), 341-347.
  • [3] A. Cohen, All admissible estimates of the mean vector, Ann. Math. Statist. 37 (1966), 458-463.
  • [4] A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Amer. Statist. Assoc. 57 (298) (1962), 369-375.
  • [5] J. Groß and A. Markiewicz, Characterization of admissible linear estimators in the linear model, Linear Algebra Appl. 388 (2004), 239-248.
  • [6] D. A. Harville, Extension of the Gauss-Markov theorem to include the estimation of random effects, Ann. Statist. 2 (1976), 384-395.
  • [7] C. R. Henderson, Estimation of genetic parameters (abstract), Ann. Math. Statist. 21 (1950), 309-310.
  • [8] C. R. Henderson, Selection index and expected genetic advance, in: Statistical Genetics and Plant Breeding, NAS-NRC 982, Washington, 1963, 141-163.
  • [9] C. R. Henderson, Best linear unbiased estimation and prediction under a selection model, Biometrics 31 (1975), 423-447.
  • [10] J. Jiang, A derivation of BLUP-Best linear unbiased predictor, Statist. Probab. Lett. 32 (1997), 321-324.
  • [11] A. I. Khuri, T. Mathew and B. K. Sinha, Statistical Tests for Mixed Linear Models, Wiley, New York, 1998.
  • [12] W. Klonecki and S. Zontek, On the structure of admissible linear estimators, J. Multivariate Anal. 24 (1988), 11-30.
  • [13] L. R. LaMotte, Admissibility in linear estimation, Ann. Statist. 10 (1982), 245-255.
  • [14] L. R. LaMotte, Admissibility, unbiasedness, and nonnegativity in the balanced, random, oneway ANOVA model, in: T. Caliński and W. Klonecki (eds.), Linear Statistical Inference (Poznań, 1984), Springer, Berlin, 1985, 184-199.
  • [15] L. R. LaMotte, On limits of uniquely best linear estimators, Metrika 45 (1997), 197-211.
  • [16] X. Q. Liu, J. Y. Rong and X. Y. Liu, Best linear unbiased prediction for linear combinations in general mixed linear models, J. Multivariate Anal. 99 (2008), 1503-1517.
  • [17] T. Mathew, C. R. Rao and B. K. Sinha, Admissible linear estimation in singular linear models, Comm. Statist. Theory Methods 13 (1984), 3033-3045.
  • [18] C. R. Rao, Estimation of parameters in a linear model, Ann. Statist. 4 (1976), 1023-1037.
  • [19] C. R. Rao, Estimation in linear models with mixed effects: a unified theory, in: Proc. Second International Tampere Conference in Statistics, Dept. Math. Sci., Univ. of Tampere, 1987, 73-98.
  • [20] H. Sahai and M. M. Ojeda, Analysis of Variance for Random Models. Volume 1: Balanced Data, Theory, Methods, Applications and Data Analysis, Birkhäuser, Boston, MA, 2004.
  • [21] W. Shiqing, M. Ying and F. Zhijun, Integral expression form of admissible linear estimators of effects in linear mixed models, in: Proc. 2010 International Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan, 2010, 56-60.
  • [22] C. Stępniak, On admissible estimators in a linear model, Biometrical J. 26 (1984), 815-816.
  • [23] C. Stępniak, A complete class for linear estimation in a general linear model, Ann. Inst. Statist. Math. A 39 (1987), 563-573.
  • [24] C. Stępniak, Admissible invariant esimators in a linear model, Kybernetika 50 (2014), 310-321.
  • [25] E. Synówka-Bejenka and S. Zontek, A characterization of admissible linear estimators of fixed and random effects in linear models, Metrika 68 (2008), 157-172.
  • [26] E. Synówka-Bejenka and S. Zontek, On admissibility of linear estimators in models with finitely generated parameter space, Kybernetika 52 (2016), 724-734.
  • [27] Y. Tian, A new derivation of BLUPs under random-effects model, Metrika 78 (2015), 905-918.
  • [28] S. Zontek, On characterization of linear admissible estimators: an extension of a result due to C. R. Rao, J. Multivariate Anal. 23 (1987), 1-12.
  • [29] S. Zontek, Admissibility of limits of the unique locally best linear estimators with application to variance components models, Probab. Math. Statist. 9 (1988), 29-44.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74a1158e-472d-4430-8733-8f4d101c3b0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.