PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional-order model of a non-linear inductor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper adopts a fractional calculus perspective to describe a non-linear electrical inductor. First, the electrical impedance spectroscopy technique is used for measuring the impedance of the device. Second, the experimental data is approximated by means of fractional-order models. The results demonstrate that the proposed approach represents the inductor using a limited number of parameters, while highlighting its most relevant characteristics.
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 59 poz., wykr., tab., rys.
Twórcy
autor
  • UISPA–LAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‒465 Porto, Portugal
  • Institute of Engineering, Polytechnic of Porto, Dept. of Electrical Engineering, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
Bibliografia
  • [1] I. Schäfer and K. Krüger, Modelling of coils using fractional derivatives, Journal of Magnetism and Magnetic Materials 307 (1) (2006) 91–98.
  • [2] I. Schäfer and K. Krüger, Modelling of lossy coils using fractional derivatives, Journal of Physics D: Applied Physics 41 (4) (2008) 045001.
  • [3] D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Models and Numerical Methods, Vol. 3, World Scientific, 2012.
  • [4] C.M. Ionescu, The human respiratory system: an analysis of the interplay between anatomy, structure, breathing and fractal dynamics, Springer Science & Business Media, 2013.
  • [5] J.T. Machado and A.M. Lopes, The persistence of memory, Nonlinear Dynamics 79 (1) (2015) 63–82.
  • [6] X.J. Yang, D. Baleanu, and H.M. Srivastava, Local fractional integral transforms and their applications, Academic Press, 2015.
  • [7] X.-J. Yang and D. Baleanu, Fractal heat conduction problem solved by local fractional variation iteration method, Thermal Science 17 (2) (2013) 625–628.
  • [8] V.E. Tarasov, Review of some promising fractional physical models, International Journal of Modern Physics B 27 (09) (2013) 1330005.
  • [9] A.M. Lopes and J.T. Machado, Fractional order models of leaves, Journal of Vibration and Control 20 (7) (2014) 998–1008.
  • [10] C.I. Muresan, C. Ionescu, S. Folea, and R. De Keyser, Fractional order control of unstable processes: the magnetic levitation study case, Nonlinear Dynamics 80 (4) (2015) 1761–1772.
  • [11] C. Ionescu and C. Muresan, Sliding mode control for a class of sub-systems with fractional order varying trajectory dynamics, Fractional Calculus and Applied Analysis 18 (6) (2015) 1441– 1451.
  • [12] J.T. Machado and A.M. Galhano, Generalized two-port elements, Communications in Nonlinear Science and Numerical Simulation 42 (2017) 451–455.
  • [13] J. Machado, A. Lopes, F. Duarte, M. Ortigueira, and R. Rato, Rhapsody in fractional, Fractional Calculus and Applied Analysis 17 (4) (2014) 1188–1214.
  • [14] M. Lewandowski and M. Orzyłowski, Fractional-order models: The case study of the supercapacitor capacitance measurement, Bull. Pol. Ac.: Tech. 65 (4) (2017) 449–457.
  • [15] D. Mozyrska and E. Pawłuszewicz, Local controllability of nonlinear discrete-time fractional order systems, Bull. Pol. Ac.: Tech. 61 (1) (2013) 251– 256.
  • [16] M. Busłowicz, Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders, Bull. Pol. Ac.: Tech. 60 (2) (2012) 279–284.
  • [17] M.S. Krishna, S. Das, K. Biswas, and B. Goswami, Fabrication of a fractional order capacitor with desired specifications: a study on process identification and characterization, IEEE Transactions on Electron Devices 58 (11) (2011) 4067 4073.
  • [18] A. Buscarino, R. Caponetto, G. Di Pasquale, L. Fortuna, S. Graziani, and A. Pollicino, Carbon black based capacitive fractional order element towards a new electronic device, AEUInternational Journal of Electronics and Communications 84 (2018) 307–312.
  • [19] S. Racewicz, Identification and non-integer order modelling of synchronous machines operating as generator, Acta Energetica.
  • [20] S. Canat, and J. Faucher, Fractional order: frequential parametric identification of the skin effect in the rotor bar of squirrel cage induction machine, in: ASME Design Engineering Technical Conferences 2003VIB-48393, Vol. 48393, 2003.
  • [21] A. Jalloul, J.-C. Trigeassou, K. Jelassi, and P. Melchior, Fractional order modeling of rotor skin effect in induction machines, Nonlinear Dynamics 73 (1‒2) (2013) 801–813.
  • [22] J.T. Machado, I.S. Jesus, A. Galhano, and J.B. Cunha, Fractional order electromagnetics, Signal Processing 86 (10) (2006) 2637– 2644.
  • [23] A. Lopes and J. Tenreiro Machado, Fractional-order model of a transformer, in: FSS2017 – International Symposium on Fractional Signals and Systems, 2017.
  • [24] J.T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation 16 (3) (2011) 1140–1153.
  • [25] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Academic press, 1998.
  • [26] F. Merrikh-Bayat and M. Afshar, Extending the root-locus method to fractional-order systems, Journal of Applied Mathematics 2008.
  • [27] I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science & Business Media, 2011.
  • [28] B. Maundy, A. Elwakil, and A. Allagui, Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method, Computers and Electronics in Agriculture 119 (2015) 153–157.
  • [29] W. Kuang and S. Nelson, Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz, Journal of Microwave Power and Electromagnetic Energy 32 (2) (1997) 115–123.
  • [30] T.J. Freeborn, A survey of fractional-order circuit models for biology and biomedicine, IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3 (3) (2013) 416–424.
  • [31] P.J.W. Debye, Polar molecules, Chemical Catalog Company, Incorporated, 1929.
  • [32] Y. Feldman, A. Puzenko, and Y. Ryabov, Non-Debye dielectric relaxation in complex materials, Chemical Physics 284 (1) (2002) 139–168.
  • [33] Z. Vosika, M. Lazarević, J. Simic-Krstić, and D. Koruga, Modeling of bioimpedance for human skin based on fractional distributedorder modified Cole model, FME Transactions 42 (1) (2014) 74–81.
  • [34] K.S. Cole and R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, The Journal of Chemical Physics 9 (4) (1941) 341–351.
  • [35] D. Davidson and R. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, The Journal of Chemical Physics 19 (12) (1951) 1484–1490.
  • [36] S. Havriliak and S. Negami, A complex plane analysis of a- dispersions in some polymer systems, in: Journal of Polymer Science Part C: Polymer Symposia, Vol. 14, Wiley Online Library, 1966, pp. 99–117.
  • [37] R.T. Sibatov and D.V. Uchaikin, Fractional relaxation and wave equations for dielectrics characterized by the Havriliak-Negami response function, arXiv preprint arXiv:1008.3972.
  • [38] E.C. Rosa and E.C. de Oliveira, Relaxation equations: Fractional models, arXiv preprint arXiv:1510.01681.
  • [39] M.C. Tripathy, D. Mondal, K. Biswas, and S. Sen, Experimental studies on realization of fractional inductors and fractionalorder bandpass filters, International Journal of Circuit Theory and Applications 43 (9) (2015) 1183–1196.
  • [40] J.T. Machado, Fractional generalization of memristor and higher order elements, Communications in Nonlinear Science and Numerical Simulation 18 (2) (2013) 264–275.
  • [41] K. Biswas, G. Bohannan, R. Caponetto, A. Lopes, and T. Machado, Fractional Order Devices, Springer, 2017.
  • [42] Y.-F. Pu, Measurement units and physical dimensions of fractance-part II: Fractional-order measurement units and physical dimensions of fractance and rules for fractors in series and parallel, IEEE Access 4 (2016) 3398–3416.
  • [43] A.M. Lopes and J.T. Machado, Modeling vegetable fractals by means of fractional-order equations, Journal of Vibration and Control 22 (8) (2016) 2100–2108.
  • [44] D. El Khaled, N. Castellano, J. Gazquez, R.G. Salvador, and F. Manzano-Agugliaro, Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables, Journal of Cleaner Production 140 (2017) 1749–1762.
  • [45] Á. Kertész, Z. Hlaváčová, E. Vozáry, and L. Staroňová, Relationship between moisture content and electrical impedance of carrot slices during drying, International Agrophysics 29 (1) (2015) 61–66.
  • [46] T.J. Freeborn, A.S. Elwakil, and B. Maundy, Compact wide frequency range fractional-order models of human body impedance against contact currents, Mathematical Problems in Engineering 2016.
  • [47] F. Groeber, L. Engelhardt, S. Egger, H. Werthmann, M. Monaghan, and H. Walles, J. Hansmann, Impedance spectroscopy for the non-destructive evaluation of in vitro epidermal models, Pharmaceutical Research 32 (5) (2015) 1845–1854.
  • [48] A. Tenreiro, et al., On the fractional-order modeling of wine, European food research & technology.
  • [49] A.M. Lopes, J.T. Machado, E. Ramalho, and V. Silva, Milk characterization using electrical impedance spectroscopy and fractional models, Food Analytical Methods (2017) 1–12.
  • [50] A.R. West, D.C. Sinclair, and N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy, Journal of Electroceramics 1 (1) (1997) 65–71.
  • [51] S. Ghasemi, M.T. Darestani, Z. Abdollahi, and V.G. Gomes, Online monitoring of emulsion polymerization using electrical impedance spectroscopy, Polymer International 64 (1) (2015) 66–75.
  • [52] M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, and A. Gombert, Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy, Solar Energy Materials and Solar Cells 91 (5) (2007) 390–393.
  • [53] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, The Journal of Physical Chemistry B 110 (28) (2006) 13872–13880.
  • [54] M. Grossi and B. Riccò, Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review, Journal of Sensors and Sensor Systems 6 (2) (2017) 303–325.
  • [55] T.K. Bera, Bioelectrical impedance methods for noninvasive health monitoring: A review, Journal of Medical Engineering 2014.
  • [56] T.K. Bera, N. Jampana, and G. Lubineau, A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling, Journal of Electrical Bioimpedance.
  • [57] F. Seoane, J. Ferreira, J.J. Sanchéz, and R. Bragós, An analog frontend enables electrical impedance spectroscopy system onchip for biomedical applications, Physiological Measurement 29 (6) (2008) 267–278.
  • [58] S. Guinta, Ask the applications engeneer–resistors, Analog Dialogue: A forum for the exchange of circuits, systems and software for real-world signal processing 31 (1) (1997) 1–24.
  • [59] F.B. Duarte and J.T. Machado, Describing function of two masses with backlash, Nonlinear Dynamics 56 (4) (2009) 409–413.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-749fafaf-4d2e-47f7-84ba-2fbab6d4f016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.