PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Qualitative evaluation of human serum proteins accelerated ageing after neutron radiation exposure by differential scanning calorimetry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Among biological macromolecules, proteins are increasingly recognised as key radiation targets. Conformational modifications of proteins and their stability after exposure to ionising radiation are fundamental issues in radiobiology and radiotherapy. This study aimed to qualitatively assess the accelerated ageing of human serum proteins after in vitro exposure to neutron radiation using differential scanning calorimetry (DSC). Material and methods: Human serum samples from healthy volunteers were exposed to a 5 Gy dose of neutron radiation. The Californ-252 was utilised as the radiation source, with activity ranging from 65 to 58 MBq and an average neutron energy of 2.35 MeV. DSC profiles were acquired for fresh, control, and irradiated serum samples immediately after exposure. Subsequent DSC measurements were conducted weekly for one month. Results: A qualitative analysis of DSC profiles made it possible to assess alterations in the serum proteins’ denaturation processes over time. The appearance of a low-temperature exothermic transition before the endothermic transition appears to be a characteristic feature of ageing-altered DSC serum profiles. All the changes visible on the DSC profiles of the irradiated samples are much more advanced than on the profiles of the control samples. In addition, the DSC method made it possible to observe the effect of individual variability on the shape of the DSC serum profiles of particular volunteers. Conclusions: The study revealed that neutron irradiation most likely accelerates serum protein ageing processes. The results indicate a considerable variation in individual radiosensitivity of proteins taken from individuals to the effect of neutron radiation. In the future, the DSC measurement could be a simple test that provides information on the magnitude of personal radiosensitivity, an interesting aspect in the context of personalised radiotherapy.
Rocznik
Strony
268--274
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Biomedical Engineering, Chorzów, Poland
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Biomedical Engineering, Chorzów, Poland
autor
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Biomedical Engineering, Chorzów, Poland
  • NU-MED Cancer Diagnosis and Treatment Centre Katowice, Katowice, Poland
  • Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Physiological and Medical Sciences, Department of Biochemistry, Katowice, Poland
  • University of Silesia in Katowice, Faculty of Science and Technology, Institute of Biomedical Engineering, Chorzów, Poland
Bibliografia
  • 1. Stirpe A, Pantusa M, Rizzuti B, et al. Resveratrol induces thermal stabilization of human serum albumin and modulates the early aggregation stage. Int J Biol Macromol. 2016;92:1049-1056. doi:10.1016/j.ijbiomac.2016.08.014
  • 2. Słonina D, Gasińska A, Biesaga B, Janecka A, Kabat D. An association between low-dose hyper-radiosensitivity and the early G2-phase checkpoint in normal fibroblasts of cancer patients. DNA Repair (Amst). 2016;39:41-45. doi:10.1016/j.dnarep.2015.12.001
  • 3. Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Micron. 2017;96:57-64. doi:10.1016/j.micron.2017.02.004
  • 4. Gramatyka M, Skorupa A, Sokół M. Nuclear magnetic resonance spectroscopy reveals metabolic changes in living cardiomyocytes after low doses of ionizing radiation. Acta Biochim Pol. 2018;65(2):309-318. doi:10.18388/abp.2018_2568
  • 5. Radman M. Protein damage, radiation sensitivity and aging. DNA Repair (Amst). 2016;44:186-192. doi:10.1016/j.dnarep.2016.05.025
  • 6. Baccaro S, Bal O, Cemmi A, Di Sarcina I. The effect of gamma irradiation on rice protein aqueous solution. Radiation Physics and Chemistry. 2018;146:1-4. doi:10.1016/j.radphyschem.2018.01.011
  • 7. Cieśla K, Eliasson AC. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch. Nucl Instrum Methods Phys Res B. 2007;265(1):399-405. doi:10.1016/j.nimb.2007.09.010
  • 8. Cieśla K, Vansant EF. Physico-chemical changes taking place in gamma irradiated bovine globulins studied by thermal analysis. In: Journal of Thermal Analysis and Calorimetry. Vol 99. ; 2010:315-324. doi:10.1007/s10973-009-0155-8
  • 9. Garbett NC, Brock GN. Differential scanning calorimetry as a complementary diagnostic tool for the evaluation of biological samples. Biochim Biophys Acta Gen Subj. 2016;1860(5):981-989. doi:10.1016/j.bbagen.2015.10.004
  • 10. Garbett NC, Mekmaysy CS, DeLeeuw L, Chaires JB. Clinical application of plasma thermograms. Utility, practical approaches and considerations. Methods. 2015;76:41-50. doi:10.1016/j.ymeth.2014.10.030
  • 11. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetry outside the box: A new window into the plasma proteome. Biophys J. 2008;94(4):1377-1383. doi:10.1529/biophysj.107.119453
  • 12. Michnik A, Drzazga Z. Thermal denaturation of mixtures of human serum proteins: DSC study. In: Journal of Thermal Analysis and Calorimetry. Vol 101. ; 2010:513-518. doi:10.1007/s10973-010-0826-5
  • 13. Michnik A, Drzazga Z, Sadowska-Krępa E, Kłapcińska B. Calorimetric monitoring of the effect of endurance training and testosterone treatment on rat serum denaturation transition. J Therm Anal Calorim. 2014;115(3):2231-2237. doi:10.1007/s10973-013-3611-4
  • 14. Michnik A, Sadowska-Krępa E, Kiełboń A, Duch K, Bańkowski S. Blood serum denaturation profile examined by differential scanning calorimetry reflects the effort put into ultramarathon by amateur long-distance runners. J Therm Biol. 2021;99. doi:10.1016/j.jtherbio.2021.103013
  • 15. Kędra-Królik K, Chmielewska I, Michnik A, Zarzycki P. Blood Serum Calorimetry Indicates the Chemotherapeutic Efficacy in Lung Cancer Treatment. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-17004-x
  • 16. Fish DJ, Brewood GP, Kim JS, Garbett NC, Chaires JB, Benight AS. Statistical analysis of plasma thermograms measured by differential scanning calorimetry. Biophys Chem. 2010;152(1-3):184-190. doi:10.1016/j.bpc.2010.09.007
  • 17. Todinova S, Krumova S, Kurtev P, et al. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim Biophys Acta Gen Subj. 2012;1820(12):1879-1885. doi:10.1016/j.bbagen.2012.08.001
  • 18. Krumova S, Rukova B, Todinova S, et al. Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochim Acta. 2013;572:59-64. doi:10.1016/j.tca.2013.09.015
  • 19. Ferencz A, Lőrinczy D. DSC measurements of blood plasma on patients with chronic pancreatitis and operable and inoperable pancreatic adenocarcinoma. J Therm Anal Calorim. 2017;127(2):1187-1192. doi:10.1007/s10973-016-5371-4
  • 20. Barceló F, Cerdà JJ, Gutiérrez A, et al. Characterization of monoclonal gammopathy of undetermined significance by calorimetric analysis of blood serum proteome. PLoS One. 2015;10(3). doi:10.1371/journal.pone.0120316
  • 21. Farkas P, Könczöl F, Lőrinczy D. Monitoring the side effects with DSC caused by cyclophosphamide treatment. JTherm Anal Calorim. 2020;142(2):765-770. doi:10.1007/s10973-019-09064-0
  • 22. Garbett NC, Mekmaysy CS, Helm CW, Jenson AB, Chaires JB. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp Mol Pathol. 2009;86(3):186-191. doi:10.1016/j.yexmp.2008.12.001
  • 23. Peters T. All About Albumin: Biochemistry, Genetics, and Medical Applications. Academic Press, 1995.
  • 24. Bohlooli M, Moosavi-Movahedi AA, Taghavi F, et al. Investigation of thermal reversibility and stability of glycated human serum albumin. Int J Biol Macromol. 2013;62:358-364. doi:10.1016/j.ijbiomac.2013.09.015
  • 25. Bohlooli M, Moosavi-Movahedi AA, Taghavi F, et al. Inhibition of fluorescent advanced glycation end products (AGEs) of human serum albumin upon incubation with 3-β-hydroxybutyrate. Mol Biol Rep. 2014;41(6):3705-3713. doi:10.1007/s11033-014-3235-1
  • 26. Ajmal MR, Chandel TI, Alam P, et al. Fibrillogenesis of human serum albumin in the presence of levodopa – spectroscopic, calorimetric and microscopic studies. Int J Biol Macromol. 2017;94:301-308. doi:10.1016/j.ijbiomac.2016.10.025
  • 27. Guglielmelli A, Rizzuti B, Guzzi R. Stereoselective and domain-specific effects of ibuprofen on the thermal stability of human serum albumin. European Journal of Pharmaceutical Sciences. 2018;112:122-131. doi:10.1016/j.ejps.2017.11.013
  • 28. Gorobets MG, Wasserman LA, Bychkova A V., Rosenfeld MA. Thermodynamic features of bovine and human serum albumins under ozone and hydrogen peroxide induced oxidation. DSC study. Chem Phys. 2019;523:34-41. doi:10.1016/j.chemphys.2019.03.018
  • 29. Gan N, Sun Q, Suo Z, et al. How hydrophilic group affects drug–protein binding modes: Differences in interaction between sirtuins inhibitors Tenovin-1/Tenovin-6 and human serum albumin. J Pharm Biomed Anal. 2021;201. doi:10.1016/j.jpba.2021.114121
  • 30. Gorobets MG, Wasserman LA, Vasilyeva AD, et al. Modification of human serum albumin under induced oxidation. Dokl Biochem Biophys. 2017;474(1):231-235. doi:10.1134/S1607672917030218
  • 31. Bruschi M, Candiano G, Santucci L, Ghiggeri GM. Oxidized albumin. the long way of a protein of uncertain function. Biochim Biophys Acta Gen Subj. 2013;1830(12):5473-5479. doi:10.1016/j.bbagen.2013.04.017
  • 32. Palumbo E, Piotto C, Calura E, et al. Individual Radiosensitivity in Oncological Patients: Linking Adverse Normal Tissue Reactions and Genetic Features. Front Oncol. 2019;9. doi:10.3389/fonc.2019.00987
  • 33. Matyjanka A, Fornalski KW. Individual radiosensitivity – is it possible to precisely determine it? Postępy Techniki Jądrowej. 2024;67(2):2-17.
  • 34. Michnik A, Polaczek-Grelik K, Staś M, Sadowska-Krępa E, Gibińska J, Drzazga Z. Delayed effects of neutron radiation on human serum: In vitro DSC study. J Therm Anal Calorim. 2016;126(1):37-45. doi:10.1007/s10973-016-5255-7
  • 35. Berlett BS, Stadtman ER. Protein Oxidation in Aging, Disease, and Oxidative Stress*. http://www.jbc.org
  • 36. Levine RL, Stadtman ER. Oxidative Modi®cation of Proteins during Aging. www.elsevier.com/locate/expgero
  • 37. Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids. 2003;25(3-4):221-226. doi:10.1007/s00726-003-0012-1
  • 38. Richardson AG, Schadt EE. The role of macromolecular damage in aging and age-related disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 2014;69:S28-S32. doi:10.1093/gerona/glu056
  • 39. Frolov A, Hoffmann R. Identification and relative quantification of specific glycation sites in human serum albumin. Anal Bioanal Chem. 2010;397(6):2349-2356. doi:10.1007/s00216-010-3810-9
  • 40. Bodiga VL, Eda SR, Veduruvalasa VD, et al. Attenuation of non-enzymatic thermal glycation of bovine serum albumin (BSA) using β-carotene. Int J Biol Macromol. 2013;56:41-48. doi:10.1016/j.ijbiomac.2013.01.030
  • 41. Bohlooli M, Moosavi-Movahedi AA, Ghaffari-Moghaddam M, et al. Comparative study of thermal domains analyzing of glycated and non-glycated human serum albumin. Thermochim Acta. 2014;594:e1-e10. doi:10.1016/j.tca.2014.08.034
  • 42. Thornalley PJ, Rabbani N. Detection of oxidized and glycated proteins in clinical samples using mass spectrometry - A user’s perspective. Biochim Biophys Acta Gen Subj. 2014;1840(2):818-829. doi:10.1016/j.bbagen.2013.03.025
  • 43. Musante L, Bruschi M, Candiano G, et al. Characterization of oxidation end product of plasma albumin „in vivo”. Biochem Biophys Res Commun. 2006;349(2):668-673. doi:10.1016/j.bbrc.2006.08.079
  • 44. Michnik A, Michalik K, Kluczewska A, Drzazga Z. Introduction COMPARATIVE DSC STUDY OF HUMAN AND BOVINE SERUM ALBUMIN. Vol 84.; 2006.
  • 45. Pîrnău A, Mic M, Neamţu S, Floare CG, Bogdan M. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2018;191:226-232. doi:10.1016/j.saa.2017.10.032
  • 46. Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:675-683. doi:10.1016/j.saa.2017.05.023
  • 47. Szkudlarek A, Wilk M, Maciazek-Jurczyk M. In vitro investigations of acetohexamide binding to glycated serum albumin in the presence of fatty acid. Molecules. 2020;25(10). doi:10.3390/molecules25102340
  • 48. Maciążek-Jurczyk M, Janas K, Pożycka J, et al. Human serum albumin aggregation/fibrillation and its abilities to drugs binding. Molecules. 2020;25(3). doi:10.3390/molecules25030618
  • 49. Koslen MM, Eskew MW, Pinkert V, et al. Capture Reagent and Strategy for Retrieving Albumin-Bound Ligands from Plasma. Adv Biol Chem. 2019;09(03):110-134. doi:10.4236/abc.2019.93009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-749f3303-1e3e-48d1-afff-ee20a1250c27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.