Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Simultaneously achieving high strength and ductility has been a long-standing goal in aluminum alloys, while the increase in strength usually leads to ductility loss. In this study, a novel thermomechanical treatment (TMT) method, i.e., pre-existing precipitation in coarse grain (CG) and cryogenic rolling plus warm rolling followed by peak aging, is developed to achieve high strength and good ductility in 211ZX aluminum alloy. As a result, a composite nanostructure including ultrafine-grained (UFG) and nanoprecipitation is obtained. Compared to a conventional T6 sample, the multi-step TMT sample has a finer grain (205 nm), while numerous GP zones and θ" phases are dispersed inside the grain. The precipitation characteristics are similar to the T6 sample. The yield strength (635 MPa) and ultimate tensile strength (690 MPa) are about 81% and 53% higher than the T6 sample, respectively, with only a slight decrease in plasticity. Microstructural characterization and thermodynamic analysis confirmed that pre-existing precipitates and cryogenic temperatures facilitate the formation of the composite nanostructure. Quantitatively strengthening calculations demonstrate that the high strength is attributed to the ultra-fine grain strengthening and precipitation strengthening, while the high plasticity is mainly due to the reduction of dislocation density caused by recovery and recrystallization during the aging process as well as the massive production of nano-GIPs (interior grain precipitates).
Czasopismo
Rocznik
Tom
Strony
art. no. e127, 2023
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- School of Materials and Metallurgy, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
autor
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 110004, China
autor
- School of Materials and Metallurgy, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
- School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
Bibliografia
- 1. Belov NA, Akopyan TK, Shurkin PK, et al. Comparative analysis of structure evolution and thermal stability of commercial AA2219 and model Al-2wt.%Mn-2wt.%Cu cold rolled alloys. J Alloy Compd. 2021;864:158823.
- 2. Li J, Lu S, Wu S, et al. Micro-mechanism of simultaneous improvement of strength and ductility of squeeze-cast Al-Cu alloy. Mat Sci Eng A. 2022;833:142538.
- 3. Chen S, Li F, Chen K, et al. Synergic effect of hot deformation temperature and pre-straining on ageing precipitates and mechanical property of 2014 Al alloy. Mater Charact. 2020;167:110510.
- 4. Snopiński P, Krol M, Paga M, et al. Effects of equal channel angular pressing and heat treatments on the microstructures and mechanical properties of selective laser melted and cast AlSi10Mg alloys. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00246-y.
- 5. Damavandi E, Nourouzi S, Rabiee MS, et al. EBSD study of the microstructure and texture evolution in an Al-Si-Cu alloy processed by route A ECAP. J Alloy Compd. 2020;858:157651.
- 6. Song D, Wang G, Zhou Z, et al. Developing a high-strength Al-11Si alloy with improved ductility by combining ECAP and cryorolling. Mat Sci Eng A. 2020;773:138880.
- 7. Orlova TS, Latynina TA, Mavlyutov AM, et al. Effect of annealing on microstructure, strength and electrical conductivity of the pre-aged and HPT-processed Al-0.4Zr alloy. J Alloy Compd. 2019;784:41-8.
- 8. Mathew RT, Singam S, Ghosh P, et al. The defining role of initial microstructure and processing temperature on microstructural evolution, hardness and tensile response of Al-Mg-Sc-Zr (AA5024) alloy processed by high pressure torsion. J Alloy Compd. 2022;901:163548.
- 9. Jabłońska MB, Kowalczyk K, Tkocz M, et al. Dual rolls equal channel extrusion as unconventional SPD process of the ultralow-carbon steel: finite element simulation, experimental investigations, and microstructural analysis. Arch Civ Mech Eng. 2021;21:1.
- 10. Kowalczyk K, Jabłońska MB, Tkocz M, et al. Effect of the number of passes on grain refinement, texture and properties of DC01 steel strip processed by the novel hybrid SPD method. Arch Civil Mech Eng. 2022;22(3):115.
- 11. Liu G, Zhang GJ, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater. 2013;12:344-50.
- 12. Shi J, Hou L, Zuo J, et al. Cryogenic rolling-enhanced mechanical properties and microstructural evolution of 5052 Al-Mg alloy. Mat Sci Eng A. 2017;701:274-84.
- 13. Xu Z, Liu M, Jia Z, et al. Effect of cryorolling on microstructure and mechanical properties of a peak-aged AA6082 extrusion. J Alloy Compd. 2017;695:827-40.
- 14. Panigrahi S, Jayaganthan K, Jayaganthan R. Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Mater Design. 2011;32:3150-60.
- 15. Wen H, Topping TD, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013;61:2769-82.
- 16. Xu PW, Luo HY, Li SJ, et al. Enhancing the ductility in the agehardened aluminum alloy using a gradient nanostructured structure. Mat Sci Eng A. 2017;682:704-13.
- 17. Khan MA, Wang Y, Malik A, et al. Microstructure characterization of 7055-T6, 6061-T6511 and 7A52-T6 Al alloys subjected to ballistic impact against heavy tungsten alloy projectile. Arch Civ Mech Eng. 2019;19:1484-1469.
- 18. Khan MA, Xu CH, Hamza M, et al. Enhanced tensile strength in an Al-Zn-Mg-Cu alloy via engineering the precipitates along the grain boundaries. J Mater Res Technol. 2023;22:696-705.
- 19. Khan MA, Wang Y, Afifi MA, et al. The formation of new (Al, Zn)3Zr precipitates in an Al-Zn-Mg-Cu aluminum alloy after aging treatment and their response to dynamic compression. Arch Civ Mech Eng. 2023;23:33.
- 20. He G, Li K, Yang Y, et al. Effect of heat treatment on the microstructure and mechanical properties of cryogenic rolling 2195 Al-Cu-Li alloy. Mater Sci Eng A. 2021;822:141682.
- 21. Dong F, Yi Y, Huang C, et al. Influence of cryogenic deformation on second-phase particles, grain structure, and mechanical properties of Al-Cu-Mn alloy. J Alloy Compd. 2020;827:154300.
- 22. Mei L, Chen XP, Ren P, et al. Effect of warm deformation on precipitation and mechanical properties of a cryorolled Al-Zn-Mg-Cu sheet. Mater Sci Eng A. 2020;771:138608.
- 23. Xu P, Luo H. Improving the ductility of nanostructured Al alloy using strongly textured nano-laminated structure combined with nano-precipitates. Mat Sci Eng A. 2016;675:323-37.
- 24. Xiao R, Yang M, et al. Optimal design of 211ZX highstrength Aluminum alloy solid solution process based on response surface method. Chin J Rare Met. 2019;43:1040-6.
- 25. Gong QJ, Yang M, et al. Hot formability and dynamic recrystallization behavior of new high performance Aluminum alloy 211ZX. Chin J Rare Met. 2018;42:36-44.
- 26. Zhang Z, Huang CW, et al. Effect of microstructure on high cycle fatigue behavior of 211Z.X-T6 Aluminum alloy. Metals. 2022. https://doi.org/10.3390/met12030387.
- 27. Ma K, Wen H, Tao H, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141-55.
- 28. Zhou W, Jiang C, Gan X, et al. Effect of shot peening on the microstructure of laser hardened 17-4PH. Appl Surf Sci. 2010;257:1154-60.
- 29. Shao CW, Zhang P, Zhu YK, et al. Simultaneous improvement of strength and plasticity: additional work-hardening from gradient microstructure. Acta Mater. 2018;145:413-28.
- 30. Feng K, Yang M, et al. The effect of a composite nanostructure on the mechanical properties of a novel Al-Cu-Mn alloy through multipass cold rolling and aging. Appl Sci. 2020;10:8109.
- 31. Zheng R, Sun Y, Ameyama K, et al. Optimizing the strength and ductility of spark plasma sintered Al 2024 alloy by conventional thermo-mechanical treatment. Mat Sci Eng A. 2014;590:147-52.
- 32. Gazizov M, Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al-Cu-Mg-Ag alloy. Mat Sci Eng A. 2015;625:119-30.
- 33. Papazian JM. A calorimetric study of precipitation in aluminum alloy 2219. Metall Trans A. 1981;12:269-80.
- 34. Shen Z, Ding Q, Liu C, et al. Atomic-scale mechanism of the θ’’→θ’ phase transformation in Al-Cu alloys. J Mater Sci Technol. 2017;33:1159-64.
- 35. Liu MW, Zheng RX, Li J, et al. Achieving ultrahigh tensile strength of 1 GPa in a hierarchical nanostructured 2024 Al alloy. Mater Sci Eng A. 2020;788:139576.
- 36. Yang QY, Zhou YL, Tan YB, et al. Effects of microstructure, texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling. J Alloy Compd. 2021;884:161135.
- 37. Wang XF, Liu H, Tang XB, et al. Influence of asymmetric rolling on the microstructure, texture evolution and mechanical properties of Al-Mg-Si alloy. Mater Sci Eng A. 2022;844:143154.
- 38. Wang Z, Fang B, Zheng Z, et al. Improving the strength and ductility of Al-Mg-Si-Cu alloys by a novel thermo-mechanical treatment. Mater Sci Eng A. 2014;607:313-7.
- 39. Aniruddha B, Siegel DJ, et al. Precipitates in Al-Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater. 2011;59:6187-204.
- 40. Deschamps A, Geuser FD, Horita Z, et al. Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy. Acta Mater. 2014;66:105-17.
- 41. Hu T, Ma K, Topping TD, et al. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013;61:2163-78.
- 42. Magalhaes DCC, Hupalo MF, Cintho OM. Natural aging behavior of AA7050 Al alloy after cryogenic rolling. Mater Sci Eng A. 2014;593:1-7.
- 43. Lechner W, Puff W, Mingler B, et al. Microstructure and vacancy-type defects in high-pressure torsion deformed Al-Cu-Mg-Mn alloy. Scripta Mater. 2009;61:383-6.
- 44. Wang SS, Jiang JT, Fan GH, et al. Accelerated precipitation and growth of phases in an Al-Zn-Mg-Cu alloy processed by surface abrasion. Acta Mater. 2017;131:233-45.
- 45. Peterson NL, Rothman SJ. Impurity diffusion in aluminum. Phys Rev B. 1970;8:3264-73.
- 46. Dolgopolov N, Rodin A, Simanov A, Gontar I. Cu diffusion along Al grain boundaries. Mater Lett. 2008;62:4477-9.
- 47. Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling Precipitation Kinetics Yield Stress Acta Mater. 1998;47:293-305.
- 48. Li L, Jang JT, Cui XY, et al. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions. J Mater Sci Technol. 2022;99:61-72.
- 49. Liu CH, Li XL, Wang SH, et al. A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys. Mater Design. 2014;54(2):144-8.
- 50. Jin T, Hai L, Hui J, et al. Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing. Mater Sci Eng A. 2016;674:256-61.
- 51. Kang UG, Lee JC, Jeong SW, Nam WJ. The improvement of strength and ductility in ultra-fne grained 5052 Al alloy by cryogenic-and warm-rolling. J Mater Sci. 2010;45:4739-44.
- 52. King H, Ha H, Lee J, et al. Outstanding mechanical properties of ultrafine-grained Al7075 alloys by high-pressure torsion. Mater Sci Eng A. 2021;810:141020.
- 53. Panigrahi SK, Jayaganthan R. Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling. Mater Sci Eng A. 2011;528:3147-60.
- 54. Wen H, Topping TD, Isheim D, et al. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013;61:2769-82.
- 55. Hai L, Wei X, Wang Z, et al. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys. Mater Sci Eng A. 2016;650:254-63.
- 56. Ye L, Gang G, Zhang X, et al. Dynamic properties evaluation of 2519A aluminum alloy processed by interrupted aging. Mater Sci Eng A. 2014;590:97-100.
- 57. Yang MJ, Orekhov A, Hu ZY, et al. Shearing and rotation of β″ and β precipitates in an Al-Mg-Si alloy under tensile deformation: In-situ and ex-situ studies. Acta Mater. 2021;220:117310.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74970267-efd6-4fa2-b472-64d7ac04e46f