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Abstract
The paper deals with forced vibrations of a horizontal thin elastic plate submerged in
a semi-infinite layer of fluid of constant depth. The pressure load on this plate is induced by wa-
ter waves arriving at the plate. This load is accompanied by pressure resulting from the motion
of the plate. The plate and fluid motions depend on boundary conditions, and, in particular, the
pressure load depends on the width of the gap between the plate and the bottom. In theoretical
description of the phenomenon, we deal with a coupled problem of hydrodynamics in which
the plate and fluid motions are coupled through boundary conditions at the plate surfaces. The
main attention is focused on transient solutions of the problem, which correspond to fluid (and
plate) motion starting from rest. In formulation of this problem, a linear theory of small deflec-
tions of the plate is employed. In order to calculate the fluid pressure, a solution of Laplace’s
equation is constructed in a doubly connected fluid domain. With respect to the initial value
problem considered, we confine our attention to a finite fluid domain. For a finite elapse of
time, measured from the starting point, the solution in the finite fluid area mimics a solution
within an infinite domain, inherent for wave propagation problems. Because of the compli-
cated structure of boundary conditions of the coupled problem considered, the fluid domain is
divided into sub-domains of simple geometry, and the solutions of the problem equations are
constructed separately in each of these domains. Numerical experiments have been conducted
to illustrate the formulation developed in this paper.
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1. Introduction

The problem considered in this paper is relevant to offshore engineering, where struc-
tures installed in sea coastal zones are loaded with water wave forces. These hydro-
dynamic forces depend on fluid flows in the vicinity of the structure, as well as on
its size, shape, rigidity, and foundation. Usually, such a structure consists of elements
© 2019 Institute of Hydro-Engineering of the Polish Academy of Sciences. This is an open access article licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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of simple geometry such as bars, pipes, and plates, and therefore, in the theoretical
description of the structure dynamics, it is reasonable to investigate dynamic charac-
teristics of these individual elements. Among them, of primary importance are elas-
tic plates submerged in fluid and loaded with forces induced by gravitational waves.
These hydrodynamic forces depend not only on waves themselves, but also on the
foundation of the plate and its orientation to the direction of wave propagation. For
instance, the wave forces on a plate perpendicular to the wave propagation direction
are different from those that act on a plate whose surface is parallel to the wave di-
rection. In general, these forces may also depend on the distance between the plate
and boundaries of the fluid domain. In cases of horizontal plates placed at a small
distance from the sea bottom, one may expect certain changes (amplifications) in hy-
drodynamic forces loading these plates. This phenomenon is related to changes in flow
velocities at the upper and bottom surfaces of the plates. In general, vibrations of the
plate submerged in fluid lead to the so-called co-vibrating mass of fluid, which signif-
icantly changes the eigenfrequencies of this plate. Thus, with respect to the above, we
focus our investigations on the coupled hydrodynamic problem of the flow-induced
motion of a horizontal plate submerged in fluid of constant depth. In order to simplify
our discussion, we confine our attention to a simply supported elastic band plate,
which makes it possible to reduce the description of the physical three-dimensional
problem to a two-dimensional one. In a formal way, the two-dimensional descrip-
tion model corresponds directly to a simply supported horizontal beam submerged in
fluid of constant depth. An additional simplification is introduced into the problem
description that plate deflections are assumed infinitesimally small. In theoretical in-
vestigations, we resort to approximate modeling that can describe the main features
of this phenomenon.

In describing vibrations of plates submerged in fluid, we frequently deal with the
problem of an infinite fluid body with a free surface, and thus with the problem of sur-
face water waves (gravitational waves) propagating in an infinite domain. In a general
case, vibrations of plates submerged in fluid are accompanied by the transmission of
energy from the plate to the fluid. In a compressible fluid, this transmission is due
to dilatational waves. In cases of fluids with a free surface, transmission also occurs
through the gravitational waves. For small vibrations with small frequencies, one may
ignore the transmission through the dilatational waves. On the other hand, for higher
frequencies of vibrations, the transmission of the energy by gravitational waves may
be neglected.

The literature on the subject is considerable. The vibration of plates submerged in
fluid has been discussed in many papers over the past decades. In most of the papers,
steady-state harmonic problems are considered in which the time factor may be elim-
inated from equations describing the problem given. In many papers, the fluid body is
infinite, and thus, together with the plate motion, the problem of waves propagating in
fluid emerges. There are also problems of practical importance in which the fluid body
is finite – for example, vibrations of tanks filled with fluid. In some cases, the inter-
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action of plates with compressible fluids is discussed, where propagation of acoustic
waves is of primary importance. Some of the investigations relevant to the current
work are shortly described below; many others are cited within these references.

As regards vibrations of elastic plates in contact with fluid, Solecki (1966) dis-
cussed the problem of an infinite elastic plate floating on a water half-space. A similar
problem of the deformation of floating ice plates was investigated by Kerr and Palmer
(1972). A detailed discussion on the dynamics of an elastic band plate floating on
a tank with a rectangular cross section is given in Sawicki (1976). More recently, Mar-
tin and Farina (1997) studied the small-amplitude, time-harmonic problem of the ra-
diation of water waves by a heaving submerged horizontal disc. This disc (a thin rigid
plate) was submerged beneath the free surface of deep water. The boundary-value
problem for the potential velocity function describing the fluid motion was reduced
to a boundary integral equation over the surface of the body immersed in fluid. The
surprising result of the analysis is that the added-mass coefficient becomes negative
for a certain range of frequencies when the disc is sufficiently close to the free sur-
face. Leniowska (1999) discussed the time-dependent problem of forced vibrations
of a circular elastic plate interacting with an infinite compressible fluid. The damping
of the plate motion is partially due to the plate material (the Kelvin-Voigt model of
damping) and to the radiation of mechanical energy by acoustic waves. Vibrations of
rectangular plates coupled with fluid were investigated by Kerboua et al (2008) and
Hosseini-Hashemi et al (2012). In the first of these papers, the fluid finite element
method was applied to the hydro-elastic vibration analysis of a plate-fluid system.
Completely submerged or floating on the free fluid surface, horizontal plates cou-
pled with a finite fluid body were considered. The accuracy of the discrete model
developed in that paper was assessed by comparing its results with data obtained in
laboratory experiments with plates placed in a rectangular fluid reservoir. The sec-
ond paper discussed the problem of vibrations of moderately thick rectangular plates
coupled with stationary fluid. The main attention of the study was focused on natural
frequencies of plates vibrating in contact with fluid for a combination of six different
boundary conditions of these plates. The results obtained were compared with those
known from the literature on the subject, obtained by the finite element method and
by experiments, to show the applicability of the proposed formulation. Similar to the
above, the problem of free vibrations of a cantilever plate partially submerged in fluid
is discussed by Kwak and Yang (2013). In their paper, the rectangular plate is placed
vertically. In order to calculate the effect of the fluid on the natural vibration charac-
teristics of the plate, elliptical coordinates were introduced in the description of the
coupled problem. In this way, elements of the virtual mass matrix were expressed in
an analytical form in terms of the Mathieu functions.

A transient problem of vibrations of a plate coupled with a finite fluid body is
considered in Nandu and Jayaraj (2014). The authors resort to a finite element for-
mulation to describe the transient motion of a plate-fluid system consisting of a rect-
angular finite fluid domain with an elastic plate forming one of the fluid boundaries.
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The natural frequencies of the system are calculated, which depend on the density
of the fluid filling the cavity. The initial plate motion induced by an assumed impact
pressure load of the plate is also calculated. Jafari and Rahmanei (2016) investigated
vibrations of a rectangular composite plate floating on a rectangular fluid tank. They
considered free and forced vibrations of this plate. The main attention of the study
was focused on the influence of the number of lamina on natural frequencies of the
plate. In discussing the free vibrations of plates in contact with a finite fluid body, one
should be aware that the reduction in the values of the plate eigenfrequencies depends
on the fluid body motion, so the reduction will be different for different amounts of
fluid.

With regard to water wave problems involving the scattering of water waves by
submerged horizontal plates and radiation of water waves by forced motion of these
plates, an important contribution was made by Porter (2014). The main attention of his
research was focused on the interaction of surface waves with thin rigid plates, includ-
ing both a two-dimensional problem of infinitely-long plates and a three-dimensional
problem of circular discs. The discussion includes the scattering of oblique waves by
an infinite plate of constant width, a radiation problem for forced motion of the plate,
and the scattering of waves by a circular disc. Only time-harmonic rigid-body motion
of these plates is considered. Analytic solutions presented in that paper are developed
on the basis of either Fourier or Hankel transforms to formulate integral equations for
functions related to the unknown jump in pressure across the thin plate.

With respect to the papers shortly described above, the problem discussed in the
present paper partially corresponds to that investigated by Sawicki (1976), Martin
and Farina (1997) and Porter (2014). Our main goal, however, is different from those
discussed in their papers. In our formulation, a thin horizontal elastic plate placed at
a small distance from the sea bottom is considered. For such a case, the width of the
gap between the plate and the sea bottom is essential for hydrodynamic forces loading
the plate. The motion of the plate is induced by water gravitational waves arriving at
the plate. The solution obtained corresponds to the initial problem of a plate-fluid
system that starts to move at a specific moment in time. In a limit, this solution may
be applied to a steady harmonic problem of a plate loaded with steady harmonic water
waves arriving at the plate from infinity.

2. Problem Formulation

Let us consider a two-dimensional problem of a simply supported thin elastic band
plate submerged in fluid, as shown schematically in Fig. 1.

The motion of the plate and fluid system is induced by a piston-type generator
placed at the beginning of the layer. In order to describe the evolution of the plate-fluid
system in time, an initial value problem is considered in which the generator, initially
at rest, starts to move at a certain moment in time. The generator motion xg(t) is as-
sumed as a known function of time. Formally, one may consider an arbitrary displace-



Flow-induced Vibrations of a Horizontal Elastic Band Plate Submerged . . . 105

Fig. 1. Elastic plate submerged in a semi-infinite layer of fluid

ment of this generator, but, bearing in mind that under natural conditions sea waves
are periodic in time, it is desirable to develop a solution corresponding to a steady
harmonic generation of the waves. Such generation, however, requires additional ex-
planations. Since we are dealing with motion that starts from rest, a harmonic gener-
ation may only be obtained as a limiting case of generation described, for instance,
by the following formula (Wilde and Wilde 2001):

xg(t) = C [A(τ) cosωt + D(τ) sinωt] , (1)

where xg(t) describes the generator horizontal displacement, t is the time measured
from the starting point, C is a constant, τ = µt is a non-dimensional time factor, µ is
a memory parameter responsible for an increase in wave generation in time, and

A(τ) =
τ3

3!
exp(−τ),

D(τ) = 1 −
(
1 + τ +

τ2

2!
+
τ3

3!

)
exp(−τ), τ = µt.

(2)

One can check that, at the starting point t = 0, the displacement, velocity, and ac-
celeration of the generator plate are all equal to zero. Moreover, with increasing time,
the generator goes asymptotically to the harmonic motion with a constant amplitude
(C in equation (1)). In practice, for a time exceeding one or two periods of wave
generation (t � T = 2π/ω), it can be assumed that we are dealing with the problem
of harmonic generation with a constant amplitude. The motion of the plate is induced
by water waves arriving at the plate from the left side of the layer (subdomain III
in Fig. 1). Both plate and fluid motions are coupled through the boundary conditions
at the plate-fluid boundaries (at the upper and bottom surfaces of the plate). These
boundary conditions mean that the normal components of the fluid and plate veloc-
ities should be equal to each other. With respect to small deflections w(x, t) of this
plate, its motion is governed by the equation (e.g. Nowacki 1972)

mpl.
∂2w

∂t2 + D∗
∂4w

∂x4 = plow. − pupp., (3)
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where mpl. is the mass per unit width and length of the plate, D∗ = Eδ3/12(1 − ν2)
is the flexural rigidity of the plate (δ is the plate thickness, and ν is Poisson’s ratio),
plow. and pupp. denote the fluid pressure at the lower and upper surfaces of the plate. It
should be stressed that the “density” of the plate is defined here as mpl. = (ρpl. − ρ)δ,
where ρpl. is the density of the plate material, and ρ is the fluid density. Assuming the
potential velocity of the fluid motion, the associated fluid pressure is described by the
formula

p = −ρ
∂Φ
∂t

+ ρg(H − z), (4)

where g is the gravitational acceleration, and Φ(x, z, t) is the velocity potential satis-
fying Laplace’s equation

∂2Φ
∂x2 +

∂2Φ
∂z2 = 0 (5)

within the fluid domain and appropriate boundary and initial conditions.
In order to describe the evolution of the plate-fluid system in time, it is assumed

that, at the starting point (at t = 0), the deflection of the plate, the dynamic part of
pressure, and the fluid velocity are all equal to zero:

w(x, t = 0) = 0, and
∂Φ
∂t

=
∂Φ
∂x

=
∂Φ
∂z

= 0 for t = 0. (6)

At the same time, for the fluid domain, the following boundary conditions hold:

∂Φ
∂x

∣∣∣∣∣
gener.

=
∂xg(t)
∂t

= ẋg(t),
∂Φ
∂x

∣∣∣∣∣
x→∞

= 0,

∂Φ
∂z

∣∣∣∣∣
z=0

= 0,
∂Φ
∂z

∣∣∣∣∣
z=H

=
∂η(x, t)
∂t

= η̇(x, t),

∂Φ
∂n
'
∂Φ
∂z

∣∣∣∣∣
plate

=
∂w(x, t)
∂t

= ẇ(x, t),

(7)

where ∂xg/∂t denotes the horizontal velocity of the generator face (the rigid wall OA
in Figure 1), and ∂w/∂t describes the transverse velocity of the plate (the velocity of
its central plane).
Relations (7) are supplemented by the Bernoulli equation written for all points of the
free surface:

∂Φ
∂t

+ gz
∣∣∣∣∣
z=η(x,t)

= 0, (8)

where η(x, t) denotes the free surface elevation.
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The kinematic and dynamic boundary conditions for the free fluid surface (de-
scribed by the fourth equation in (7) and equation (8)) are usually reduced to one
equation for the velocity potential:

∂2Φ
∂t2 + g

∂Φ
∂z

∣∣∣∣∣∣
z=H

= 0. (9)

In order to find a solution of equation (5), satisfying the above initial and boundary
conditions, it is convenient to express the plate deflection w(x, t) in terms of eigen-
functions of this plate vibrating in air. Thus, in the first step, free vibrations of the
plate in air are considered. For this case, equation (3) reduces to the following one:

mpl.
∂2w

∂t2 + D∗
∂4w

∂x4 = 0, (10)

where mpl. = ρpl.δ.
For harmonic vibrations, the standard method of separation of variables is applied:

w(x, t) = W (x) exp(iωt), (11)

whereω is the vibration frequency, and W (x) is the deflection amplitude. Substitution
of this relation into equation (10) gives

−ω2mpl.W + D∗
∂4W
∂x4 = 0. (12)

A general solution of this equation, which satisfies boundary conditions at x = ±b,
reads

W (x) =
∑

n
An sin rn(x + b), rn =

nπ
2b
, n = 1, 2, ..., (13)

where An are constants, and sin rn(x + b) are orthogonal eigenfunctions of the plate.
At the same time, equations (12) and (13) yield the set of eigenfrequencies of the

plate vibrating in air:

ωn = (rn)2

√
D∗
mpl.

=

(nπ
2b

)2
√

D∗
mpl.

, n = 1, 2, ... . (14)

In the further investigations, eigenfunctions (13) of the plate vibrating in air are em-
ployed in a description of the forced vibrations of the plate submerged in fluid. The
latter are induced by time-dependent surface gravitational waves. To this end, gener-
ation of fluid motion, shown in Fig. 1, is considered in which the plate-fluid system
starts to move at a specific moment in time (at t = 0+). The problem is assumed linear,
and therefore in its formulation it is convenient to divide the potential function into
two parts:

Φ∗(x, z, t) = φ(x, z, t) + Φ(x, z, t), (15)
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where Φ∗ is a new notation for the potential Φ considered above (equations 4–9).
The first part in this representation corresponds to vibrations of the plate, and the
second part is associated with wave generation. Each of these parts satisfies Laplace’s
equation within the fluid domain and appropriate initial and boundary conditions.
In the first step, the solution for the “external” fluid domain (i.e. the fluid domain
except for the rectangular domain IV in Fig. 1) is considered. Thus, with respect to
the notations and coordinate system shown in Fig. 1, the following boundary and
initial conditions hold:

∂2Φ
∂t2 + g

∂Φ
∂z

+ g
∂φ

∂z

∣∣∣∣∣∣
z=H

= 0,

∂Φ
∂x

∣∣∣∣∣
x=0

= ẋg(t),
∂φ

∂x

∣∣∣∣∣
x=0

= 0,
∂Φ
∂x

∣∣∣∣∣
x→∞

= 0,
∂φ

∂x

∣∣∣∣∣
x→∞

= 0,

∂Φ
∂t

∣∣∣∣∣
x→∞

= 0,
∂φ

∂t

∣∣∣∣∣
x→∞

= 0,

∂Φ
∂z

∣∣∣∣∣
x=O−1 and x>5, z=0

= 0,
∂Φ
∂z

∣∣∣∣∣
x=3−7,z=c

= 0,
∂Φ
∂x

∣∣∣∣∣
z=1−2

=
∂Φ
∂x

∣∣∣∣∣
z=5−6

= 0,

∂φ

∂z

∣∣∣∣∣
x=O−1 and x>5, z=0

= 0,
∂φ

∂z

∣∣∣∣∣
plate

=
∂w(x, t)
∂t

, φ|z=H = 0,

and

∂Φ
∂t

=
∂Φ
∂x

=
∂Φ
∂z

=
∂φ

∂t
=
∂φ

∂x
=
∂φ

∂z
= 0 for t = 0.

(16)

The solution for the “external” domain (regions III , I , II in Fig. 1) should match
a solution for the rectangular fluid domain (area IV in Fig. 1) . This means that the
solution beneath the plate must be correlated with the potentials Φ and φ. Due to con-
ditions (16), however, the potential for the rectangular fluid domain, say ϕ(x, z, t), may
by obtained independently of the potential Φ, and therefore it should be matched only
with the potential φ. The matching with the potential Φ at common boundaries may be
done in the second step by introducing an additional potential ϕadd. beneath the plate.
Accordingly, in constructing a solution for the potential Φ(x, z, t), it is sufficient to
confine our attention to the potentials φ and ϕ. Such a solution simplifies the solution
of the whole problem considered.

A comment is needed here. In addition to the boundary conditions given above, it
is necessary to investigate the potential behaviour at the plate end points. If the cross
section of the plate is rectangular with two right angles at the corner points of the plate,
the fluid velocity field is singular at these points. It may be shown, however, that this
fluid velocity field is an integrable function along an arbitrary path in the vicinity of
these end points, and thus, the potential function is a rational function within the fluid
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domain. Accordingly, with respect to the boundary conditions written above, one may
construct separate solutions for the potential functions φ and ϕ. Due to the boundary
condition at the free fluid surface (φ|z=H = 0), this potential describes a standing wave.
Therefore, in the next section, the standing wave solution is considered.

3. Standing Wave Solution

With respect to the previous section, let us now consider solutions of placeLaplace’s
equation for the potentials φ(x, z, t) and ϕ(x, z, t). It follows from the associated bound-
ary conditions that these potential functions depend only on the plate motion. The
problem for these potentials is formulated in the doubly connected fluid domain, and
therefore, in constructing its solution, it is convenient to divide this domain into four
parts: I , II , II and IV (see Fig. 1) and look for solutions in each of these parts sepa-
rately. In descriptions of these potential functions within sub-domains, it is convenient
to introduce local Cartesian coordinate systems. Thus, with respect to these coordinate
systems, shown in Fig. 1, the general solutions of Laplace’s equation are as follows:

Subdomain III (0 ≤ x ≤ L, 0 ≤ z ≤ H):

φ(x, z, t) = −
∑
j=1

C j(t)
1
k j

(
e−k j x + e−k j (2L−x)

)
cos k jz,

k j =
2 j − 1

2H
π, j = 1, 2, . . . .

(17)

Subdomain II (0 ≤ x < ∞, 0 ≤ z ≤ H):

φ(x, z, t) = −
∑
j=1

B j(t)
1
k j

e−k j x cos k jz, k j =
2 j − 1

2H
π, j = 1, 2, . . . (18)

Subdomain I (−b ≤ x < +b, 0 ≤ z ≤ h):

φ(x, z, t) = −
∑
n=1

Ȧn(t)
1
rn

1
vn

(
e−rnz − ern(z−2h)

)
sin rn(x + b) +

+
∑
m=1

[
D1

m(t)
cosh(k∗mx)
cosh(k∗mb)

+ D2
m(t)

sinh(k∗mx)
sinh(k∗mb)

]
cos k∗mz,

rn =
nπ
2b
, vn = 1 + e−2rnh, k∗m =

2m − 1
2h

π, m = 1, 2, . . . , n = 1, 2, . . . ,

(19)

where Ȧn(t) = dAn(t)/dt.
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Subdomain IV (−b ≤ x ≤ +b, 0 ≤ z ≤ d):

ϕ(x, z, t) =
∑
n=1

Ȧn(t)
1
rn

cosh rnz
sinh rnd

sin rn(x + b) +

+ E0(t) +
∑
m=1

[
E1

m(t)
cosh kmx
cosh kmb

+ E2
m(t)

sinh kmx
sinh kmb

]
cos kmz,

rn =
nπ
2b
, km =

mπ
d
, m = 1, 2, . . . , n = 1, 2, . . . .

(20)

It is worth adding here that the potential φ(x, z, t), defined by equations (17) and (18),
quickly decays with growing distance from the plate. Thus, for a sufficient distance,
say L >> 0, the second term in the square brackets in equation (17) may be neglected
in practical calculations. To save space, hereinafter we omit the time character t in
description of the functions A(t), · · ·, E(t), i.e. all the functions are named constants.
In accordance with the linear problem considered, all constants: B j ,C j , j = 1, 2, . . .,
D1

m,D2
m, m = 1, 2, . . . , and E0, and E1

m, E2
m,m = 1, 2, . . ., may be expressed in terms

of the constants Ȧn = dAn/dt, n = 1, 2, . . .. It means that, for an arbitrary deflection
of the plate, it is possible to find appropriate solutions within the corresponding fluid
domains. To this end, we match solutions at the common boundaries of the subdo-
mains. Thus, let us assume in advance that the solutions corresponding to B j and C j
( j = 1, 2, . . .) are known. The potential ϕ(x = b, z) below the plate should be equal to
that of the right-hand side domain, i.e. to φ(x = 0, z) at the common boundary. This
condition gives

E0 +
∑
m=1

(
E1

m + E2
m

)
cos kmz = −

∑
j=1

B j
1
k j

cos k jz. (21)

In a similar way, at the boundary (x = −b, z), we have

E0 +
∑
m=1

(
E1

m − E2
m

)
cos kmz = −

∑
j=1

C j
1
k j

(
1 + e−2k j L

)
cos k jz. (22)

Multiplication of equation (21) in succession by cos kmz (m = 0, 1, 2, . . .) and then
integration in the range (0 ≤ z ≤ d) leads to the following formulae:

E0 = −
1
d

∑
j=1

B j
1

(k j)2 sin k jd,

E1
m + E2

m = −
2
d

∑
j=1

B j


(−1)m sin k jd
(k j)2 − (km)2 for k j , km,

d
2k j

for k j = km,

m = 1, 2, . . . .
(23)
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Similar results hold for the left boundary:

E0 = −
1
d

∑
j=1

C j
(
1 + e−2k j L

) 1
(k j)2 sin k jd,

E1
m − E2

m = −
2
d

∑
j=1

C j
(
1 + e−2k j L

)
×

×


(−1)m sin k jd
(k j)2 − (km)2 for k j , km,

d
2k j

for k j = km,

m = 1, 2, . . . .

(24)

A similar procedure is employed for the upper fluid domains. Comparisons of the
potential functions at the common boundaries of these domains give∑

m=1

(
D1

m + D2
m

)
cos k∗mz = −

∑
j

B j
1
k j

cos k j(z + c),

∑
m=1

(
D1

m − D2
m

)
cos k∗mz = −

∑
j

C j
1
k j

(
1 + e−2k j L

)
cos k j(z + c).

(25)

From multiplication of these equations in succession by cos k∗mz (m = 1, 2, ...), and
then integration in the range (0 ≤ z ≤ h), the following is obtained:

D1
m + D2

m = −
2
h

∑
j=1

B j ×

×


sin k jc

(k∗m)2 − (k j)2 for k j , k∗m,

1
2(k j)2

(
k jh · cos k jc − sin k jc

)
for k j = k∗m,

m = 1, 2, . . . ,
(26)

and

D1
m − D2

m = −
2
h

∑
j=1

C j
(
1 + e−2k j L

)
×

×


sin k jc

(k∗m)2 − (k j)2 for k j , k∗m,

1
2(k j)2

(
k jh · cos k jc − sin k jc

)
for k j = k∗m,

m = 1, 2, . . .
(27)

Equations (23–27) allow us to eliminate two sets of constants (Em and Dn with
m = 0, 1, 2 . . ., n = 1, 2, . . .) from the equations of the problem considered. In order
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to eliminate the sets of constants B j and C j ( j = 1, 2, . . .), we employ the remaining
boundary conditions that the velocity components normal to the fluid boundaries be-
tween the associated fluid domains (finite and infinite) must be the same. To write
these conditions, it is necessary to calculate the normal fluid velocities. Following the
potential functions described by equations (17–20), the normal fluid velocities are as
follows:
The right fluid domain (at x = +b of the plate):

0 ≤ z ≤ d

u =
∂ϕ

∂x

∣∣∣∣∣
x=b

=
∑
n=1

Ȧn(−1)n cosh rnz
sinh rnd

+

+
∑
m=1

km

(
E1

m tanh kmb + E2
m

1
tanh kmb

)
cos kmz =

=
∑

j
B j cos k jz ,

(28)

and
c ≤ z ≤ H

u =
∂φ

∂x

∣∣∣∣∣
x=b

= −
∑
n=1

Ȧn(−1)n 1
vn

(
e−rn(z−c) − ern(z−c−2h)

)
+

+
∑
m=1

k∗m

(
D1

m tanh k∗mb + D2
m

1
tanh k∗mb

)
cos k∗m(z − c) =

=
∑

j
B j cos k jz .

(29)

The left fluid domain (at x = −b of the plate):

0 ≤ z ≤ d

u =
∂ϕ

∂x

∣∣∣∣∣
x=−b

=
∑
n=1

Ȧn
cosh rnz
sinh rnd

+

+
∑
m=1

km

(
−E1

m tanh kmb + E2
m

1
tanh kmb

)
cos kmz =

= −
∑

j
C j

(
1 − e−2k j L

)
cos k jz

(30)

and
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c ≤ z ≤ H

u =
∂φ

∂x

∣∣∣∣∣
x=−b

= −
∑
n=1

Ȧn
1
vn

(
e−rn(z−c) − ern(z−c−2h)

)
+

+
∑
m=1

k∗m

(
−D1

m tanh k∗mb + D2
m

1
tanh k∗mb

)
cos k∗m(z − c) =

= −
∑

j
C j

(
1 − e−2k j L

)
cos k jz .

(31)

Equations (28–31) make it possible to express all the constants B j ,C j in terms of the
constants E1

m, E2
m and D1

m,D2
m. In order to find the desired relations, equations (28–31)

are multiplied in succession by the functions cos k jz ( j = 1, 2, . . .) and then integrated
within the range (0 ≤ z ≤ H). This procedure leads to two systems of equations:

x = b∑
n=1

JAn
j · Ȧn +

∑
m=1

(
JEm

j · E
1
m + KEm

j · E
2
m

)
+

+
∑
m=1

(
JDm

j · D
1
m + KDm

j · D
2
m

)
= B j , j = 1, 2, . . .

(32)

and

x = −b∑
n=1

KAn
j · Ȧn +

∑
m=1

(
−JEm

j · E
1
m + KEm

j · E
2
m

)
+

+
∑
m=1

(
−JDm

j · D
1
m + KDm

j · D
2
m

)
= −C j

(
1 − e−2k jh

)
, j = 1, 2, . . . ,

(33)

where the following substitutions have been made:

JAn
j =

2
H

(−1)n

 1
sinh rnd

d∫
0

cosh rnz · cos k jz dz −

−
1
vn

H∫
c

(
e−rn(z−c) − ern(z−c−2h)

)
· cos k jz dz

 =

=
2
H

(−1)n 1

(rn)2 +
(
k j

)2

[
rn

(
cos k jd − cos k jc

)
+

+ k j

( sin k jd
tanh rnd

+ tanh rnh · sin k jc
)]
, j, n = 1, 2, . . . ,

(34)
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JDm
j =

2
H

k∗m tanh k∗mb
H∫

c

cos k∗m(z − c) · cos k jz dz =
2
H

k∗m tanh k∗mb ×

×


k j(

k∗m
)2
−

(
k j

)2 sin k jc for k∗m , k j ,

1
2k j

(
k jh · cos k jc − sin k jc

)
for k∗m = k j ,

j,m = 1, 2, . . . ,

(35)

JEm
j =

2
H

km tanh kmb
d∫

0

cos kmz · cos k jz dz =
2
H

km tanh kmb ×

×


(−1)m k j sin k jd(

k j
)2
− (km)2

for km , k j ,

d
2

for km = k j ,

j,m = 1, 2, . . . ,

(36)

and

KAn
j =

2
H

1
sinh rnd

d∫
0

cosh rnz · cos k jz dz −

−
1
vn

H∫
c

[
e−rn(z−c) − ern(z−c−2h)

]
· cos k jz dz =

=
2
H

1

(rn)2 +
(
k j

)2

[
rn

(
cos k jd − cos k jc

)
+

+ k j

( sin k jd
tanh rnd

+ sin k jc · tanh rnh
)]
, j, n = 1, 2, . . . ,

(37)

KDm
j =

2
H

k∗m
1

tanh k∗mb

H∫
c

cos k∗m(z − c) · cos k jz dz =
2
H

k∗m
1

tanh k∗mb
×

×



 k j sin k jc(
k∗m

)2
−

(
k j

)2 for k∗m , k j ,

1
2k∗m

(
k∗mh · cos k jc − sin k jc

)
for k∗m = k j ,

j,m = 1, 2, . . . ,

(38)
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KEm
j =

2
H

km
1

tanh kmb

d∫
0

cos kmz · cos k jz dz =
2
H

km
1

tanh kmb
×

×


(−1)m k j sin k jd

(k j)2 − (km)2 for km , k j ,

d
2

for km = k j ,

j,m = 1, 2, . . . .

(39)

Formally, equations (32) and (33), together with relations (23–27), allow us to ex-
press all constants in terms of the constants Ȧn(t), (n = 1, 2 . . .). It should be stressed,
however, that these coupled equations correspond to an infinite number of these con-
stants (m, n = 1, 2, . . . ,∞), and therefore, in order to simplify our further discussion,
we resort to a finite number of terms in the infinite series entering these equations.
In this way, the resulting system of algebraic equations may be solved by a numerical
procedure. Thus, in order to make our further discussion clear, let us denote by nd, ne,
and n j the numbers of terms taken into account in the series corresponding to D1

m,D2
m,

E1
m, E2

m, and B j ,C j , respectively. For such a finite system, it is reasonable to resort to
a matrix notation, which is more convenient in description of the phenomenon. To
this end, equations (23–27) are written in the following matrix forms:

E0 = ET · (B + EX · C) ,
E1 + E2 = EB · B,
E1 − E2 = EB · EX · C,
D1 + D2 = DB · B,
D1 − D2 = DB · EX · C,

(40)

where EX is a square diagonal matrix

EXdiag = (1 + e−2k j L), j = 1, 2, . . . , n j, (41)

and (1 × n j) row matrix ET is defined as follows:

ET =

(
−

1
2d

1
(k j)2 sin k jd

)
, j = 1, 2, . . . , n j. (42)

Each of the vector matrices B and C in equations (40) has n j elements. At the same
time, equations (23) and (24) lead to the (ne × n j) matrix EB:

EBm, j = −
2
d


(−1)m sin k jd
(k j)2 − (km)2 for k j , km,

d
2k j

for k j = km.

(43)
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Finally, the (nd × n j) matrix DB is defined by the formula

DBm, j = −
2
h


sin k jc

(k∗m)2 − (k j)2 for k j , k∗m,

1
2(k j)2

(
k jh · cos k jc − sin k jc

)
for k j = k∗m.

(44)

The sum and difference of the two equations (40) lead to the following relations:

2E1 = EB · (B + EX · C) ,
2E2 = EB · (B − EX · C) ,
2D1 = DB · (B + EX · C) ,
2D2 = DB · (B − EX · C) .

(45)

On the other hand, equations (32) and (33) give

B = J A · Ȧ + JE · E1 + KE · E2 + J D · D1 + K D · D2,
EY · C = −

(
K A · Ȧ − JE · E1 + KE · E2 − J D · D1 + K D · D2

)
,

(46)

where EY is a square diagonal matrix

EYdiag =
(
1 − e−2k j L

)
, j = 1, 2, . . . , n j. (47)

Elements of the square matrices J A, JE, J D, K A, KE and K D are described by
equations (34–39), respectively. The sum and difference of the two equations (46)
yield the following relations:

B + EY · C = (J A − K A) · Ȧ + 2JE · E1 + 2J D · D1,
B − EY · C = (J A + K A) · Ȧ + 2KE · E2 + 2K D · D2. (48)

Now, from substitution of equations (45) into relations (48) one obtains

(I − JW) · B + (EY − JW · EX) · C = (J A − K A) · Ȧ,
(I − KW) · B − (EY − KW · EX) · C = (J A + K A) · Ȧ, (49)

where I is the (n j × n j) unit diagonal matrix, and

JW = JE · EB + J D · DB,
KW = KE · EB + K D · DB. (50)

The solutions of equations (49) may be expressed in the following form:

B = BA · Ȧ,
C = CA · Ȧ. (51)
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Substitution of these relations into equations (45) gives

E0 = ET · (BA + EX · CA) · Ȧ,

E1 =
1
2

EB · (BA + EX · CA) · Ȧ, E2 =
1
2

EB · (BA − EX · CA) · Ȧ,

D1 =
1
2

DB · (BA + EX · CA) · Ȧ, D2 =
1
2

DB · (BA − EX · CA) · Ȧ.

(52)

With the above relations, all the unknown constants (parameters) of the problem con-
sidered are expressed in terms of independent parameters that correspond to the ve-
locity of plate deflection. It is important to note that none of the matrices in these
equations, i.e. ET , EB, DB, EX, BA, or CA, depends on time.

4. Propagating Wave Solution

The solution presented in the preceding section corresponds to standing waves (the
pressure at the free surface at z = H is zero) associated with the motion of the plate.
The second part of our solution (equation 15) corresponds to propagating waves gener-
ated by the piston-type generator (the rigid vertical wall OA in Fig. 1). In constructing
a solution for the second part of the potential function, i.e. for Φ, a coupling of the
two potentials at the free fluid surface should be taken into account (compare with
the first equation 16). In the case of a small gap between the plate and the bottom,
however, one may construct an approximate solution based on the assumption that
∂φ/∂z|z=H in that equation is so small that it may be neglected. Nevertheless, in what
follows, a general case is considered in which this term is taken into account. On the
other hand, as compared to problem formulation for the potential φ, in constructing
a solution for Φ, a simply connected fluid domain is considered, which consists of
a semi-infinite layer of fluid with a finite step in place of the plate. In a formal way,
the fluid domain may be divided into three parts: two rectangular finite domains and
a semi-infinite one, and the solution for the potential Φ may be expressed in the form
of a sum of separate solutions constructed in these sub-domains. As compared to the
solution for the potential φ, however, a time-dependent solution for the potential Φ be-
comes more complicated (the second time derivative of the potential emerges in the
boundary condition at the free fluid surface). Therefore, in order to simplify the de-
scription of the problem considered, it is reasonable to resort to a discrete formulation
for the second part of the potential function by the finite difference method (FDM).
At the same time, continuous time is also replaced by a countable set of discrete time
steps (time points). In the FD formulation, the continuous fluid domain is represented
by a set of nodal points of the assumed grid. Thus, with respect to the geometry of the
fluid domain, a rectangular spacing of points is considered in which ∆x denotes the
spacing of vertical lines and ∆z is the spacing of horizontal lines. For a typical nodal
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point (i, j) in the fluid area, where i denotes a vertical line, and j denotes a horizontal
one, the FD analogue of Laplace’s equation for the velocity potential Φ(x, z, t) is

−Φi−1, j − ε Φi, j−1 + KΦi, j − ε Φi, j+1 − Φi+1, j = 0, (53)

where

ε =

(
∆x
∆z

)2

, K = 2(1 + ε). (54)

Equation (53) is used for all nodal points of the fluid domain, including boundary
points. It is necessary to add, however, that with this discrete method, only a finite
number of points may be taken into account, and thus, instead of the infinite fluid
domain, only a finite part of the domain may be considered. And thus, instead of the
infinite fluid layer in Fig. 1, a finite part of the layer, with a boundary at x = LR, is taken
into account. In this approach, it is necessary to formulate a transmitting boundary
condition for this boundary. In a simple case of the harmonic monochromatic wave,
this condition may be written in the following form:

∂Φ
∂t

+ cw
∂Φ
∂x

∣∣∣∣∣
x=xR

= 0, (55)

where cw = ω/k (with ω2 = gk tanh kh) is the wave celerity and k is the wave number.
In the initial value problem considered here, the local wave number and wave

velocity depend on time, and therefore, it is not possible to formulate the correspond-
ing boundary condition in a closed analytical form. To this end, it is necessary to
resort to a specific approximation dependent on the given problem. For instance, in
the discrete integration of the problem in time, the associated transmitting condition
may be subsequently modified at each time step. On the other hand, for a sufficiently
large x = LR (the artificial boundary is assumed far off the generator-plate system)
and a relatively small elapse of time from the start of wave generation (until then the
system is at rest), it is reasonable to assume that the fluid at x = LR is at rest, and
thus, in the numerical integration of the problem in time, it is admissible to assume
that ∂Φ/∂x|x=LR ≈ 0. This approach will be employed in our further discussion of the
discrete integration of the problem equations in time. Accordingly, with respect to the
above, the problem is reduced to unknown vales of the potential at nodal points of the
finite fluid domain (interior and boundary points of the fluid domain). A solution of
the system of FDM equations for these unknown values of the potential Φi, j depends
not only on the generator amplitude, but also on the unknown potential φ(x, z), which
in turn depends on the set of parameters Ȧn (n = 1, 2, · · · , na). In this way, the problem
is transformed into a “new” coupled problem in which the solution for the potential
Φi, j depends on an unknown set of parameters Ȧn. Therefore, in order to find the
solution of this coupled problem, a two-step procedure is employed. In the first step,
the solution to the potential Φ(x, z) is expressed in the form of a linear combination
of solutions, corresponding to unknown parameters Ȧn (n = 1, 2, · · · , na). And then,
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in the second step, these parameters are obtained by solving the plate equation. This,
in turn, allows us to calculate the deflection of the plate, as well as the pressure field
and the free-surface elevation.

With respect to the above, let us now consider the discrete formulation of the
problem. Since the boundary condition at the free surface and the equation of the plate
motion contain the time derivatives of the potential and deflection of the plate, it is
necessary to implement a time integration of these functions. To this end, a discrete
time integration by the Wilson θ method is employed, which is unconditionally stable.
This method makes it possible to write FD equations for the unknown dependent
values of the problem (the potential function and plate deflection) at a single level of
time. It is based on a linear approximation of the second time derivative of a dependent
variable at points of discrete time. To make our further discussion clear, some of
the fundamental equations of the method are summarized here (for details see Bathe
1982). Assuming, that the solution of the problem is known at the moment t, i.e.
Φ(t) = Φ(1), Φ̇ = Φ̇(1) and Φ̈ = Φ̈(1) , the standard equations of the method are

Φ̈(τ) = Φ̈(1) +
τ

DT
(
Φ̈(3) − Φ̈(1)

)
, (56)

and
Φ̇(τ) = Φ̇(1) + τ Φ̈(1) +

τ2

2DT
(
Φ̈(3) − Φ̈(1)

)
,

Φ(τ) = Φ(1) + τ Φ̇(1) +
τ2

2
Φ̈(1) +

τ3

6DT
(
Φ̈(3) − Φ̈(1)

)
,

(57)

where Φ(3) = Φ(t + DT ), DT = θ · ∆t, θ = 1.47, and τis measured from the first point
(τ = 0 for φ(1)), with ∆t being the time step.
From these equations, one obtains

Φ̇(3) =
3

DT
Φ(3) −

3
DT

(
Φ(1) +

2
3

DT Φ̇(1) +
DT 2

6
Φ̈(1)

)
=

3
DT

Φ(3) −
3

DT
R1

(1),

Φ̈(3) =
6

DT 2 Φ(3) −
6

DT 2

(
Φ(1) + DT Φ̇(1) +

DT 2

3
Φ̈(1)

)
=

6
DT 2 Φ(3) −

6
DT 2 R2

(1).

(58)

In this procedure, all equations of the problem, together with boundary conditions,
are written at a common level of time, i.e. at the time t(3) = t(1) + DT . Knowing the
solution at this level of time, one can calculate the solution at the time level t(2) =

t(1) + ∆t:

Φ̈(t + ∆t) = Φ̈(1) +
∆t
DT

(
Φ̈(3) − Φ̈(1)

)
,

Φ̇(t + ∆t) = Φ̇(1) + Φ̈(1)∆t +
(∆t)2

2DT
(
Φ̈(3) − Φ̈(1)

)
,

Φ(t + ∆t) = Φ(1) + Φ̇(1)∆t +
(∆t)2

2
Φ̈(1) +

(∆t)3

6DT
(
Φ̈(3) − Φ̈(1)

)
.

(59)
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For a nodal point ‘N’ at the free surface of the fluid (at z = H), the finite difference
analogue of the first relation in equations (16) is

6
DT 2 ΦN −

6
DT 2 R2

(1) +
g

2b
(
Φ+ − ΦN−1

)
+ g

∂φ

∂z

∣∣∣∣∣
z=h

= 0, (60)

where Φ+ = Φ(H + ∆z), and ΦN−1 = Φ(H − ∆z).
From the latter equation, it follows that

Φ+ = −
12∆z
gDT 2 ΦN +

12∆z
gDT 2 R2

(1) + ΦN−1 − 2∆z
∂φ

∂z

∣∣∣∣∣
z=h

. (61)

Substitution of this relation into equation (53) gives

− ΦL
N − 2εΦN−1 + K∗ΦN − ΦR

N =
12∆zε
gDT 2 R2

(1) − 2∆zε
∂φ

∂z

∣∣∣∣∣
z=h

, (62)

where
K∗ = K +

12ε∆z
gDT 2 . (63)

A remark is needed. The right-hand side of equation (62) contains the known value of
R2

(1) at the moment t(1)of time and the value of ∂φ/∂z|z=h at the level t(3) = t(1) + DT .
The latter results from the explicit formulae

∂φ(3)

∂z

∣∣∣∣∣
z=h

=



n j∑
j=1

(−1) j+1C j(t(3))
(
e−k j x + e−k j (2L−x)

)
for 0 ≤ x ≤ L,

2
na∑

n=1
Ȧn(t(3))

1
wn

exp(−rnh) sin rn(x + b)+

+

nd∑
m=1

(−1)mkm

[
D1

m(t(3))
cosh(kmx)
cosh(kmh)

+ D2
m(t(3))

sinh(kmx)
sinh(kmh)

]
for − b ≤ x ≤ b,

and
n j∑
j=1

(−1) j+1B j(t(3)) exp(−k j x) for 0 ≤ x ≤ ∞.

(64)

In the finite difference formulation, equations (53) are written for all nodal points,
representing the finite fluid domain. For points of the free surface, relations (62) hold.
In this way, the final system of nw algebraic equations for nodal values of the potential
Φ(3)(xi, z j) = Φ(3)(k = 1, 2, . . . , nw) may be written in the following matrix form:

[RM] ·
(
Φ(3)

)
=

(
PA(3)

)
+

(
PB(1)

)
+

(
PC(3)

)
, (65)
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where [RM] is the (nw × nw) matrix of equations,
(
PA(3)

)
denotes the (nw × 1) vector

associated with the generator velocity ẋg(t(3)),
(
PB(1)

)
is the vector dependent on R2

(1),
i.e. it depends on the known solution for points of the free surface at t = t(1), and(
PC(3)

)
is calculated at points of the free surface by equations (64). Since the constants

B j ,C j and D1
m,D2

m in equation (64) depend on Ȧn (compare with equations (52)), the
third vector in equation (65) may be written in the following form:

(
PC(3)

)
= −2∆zε

[
∂φ

∂z

∣∣∣∣∣
z=h

]
·
(
Ȧ(3)

)
= [F3] ·

(
Ȧ(3)

)
, (66)

where [F3] is the (nw × na) square matrix.
We are dealing with a linear problem, and therefore the solution of equation (65)

is the sum of solutions corresponding to individual components of the right-hand side
of this equation. And thus, we have(

Φ(3)
)

= ẋg(3) · (FA) + [FC] ·
(
Ȧ(3)

)
+

(
FB(1)

)
. (67)

The matrices (FA) and [FC] in this equation do not depend on time. The matrix
FB(1) in this relation depends on time. It is defined by the known solution of the
problem at the previous level of time, i.e. at t = t(1) (equation (67) corresponds to
t = t(3) = t(1) + DT ). The above equation demonstrates the main feature of the linear
problem considered here, which is that the potential Φ may be treated as the sum of
the three independent potentials:

Φ(3) = Φ(3)(ẋg(3)) + Φ(3)
(
Ȧ(3)

)
+ Φ(3)

(
R2

(1)

)
, (68)

where arguments entering the right-hand side terms in this relation mean that the com-
ponent potentials depend on their respective arguments.In order to find a final solution
of this equation, it is necessary to resort to equation (3), describing the plate motion.
Since the latter equation contains the fluid pressure (at the upper and lower surfaces
of the plate), we have to complete our description by calculating these pressure fields.
The pressure at the upper surface of the plate (at z = c in Fig. 1) depends on the po-
tentials Φ and φ. The pressure at the lower surface of this plate (at z = d in Fig. 1)
depends on the known potential ϕ (equation (20)) and the additional potential ϕadd.,
unknown at this moment. The latter should match the potential Φ at the boundaries
(1–2) and (5–6) (see Fig. 1).

5. Additional Velocity Potential Beneath the Plate

With respect to the discussion in the preceding sections, let us consider now the so-
lution problem for the potential ϕadd.(x, z, t), satisfying Laplace’s equation within the
rectangular fluid domain (1, 5, 6, 2), and the following boundary conditions:

∂ϕadd.

∂x

∣∣∣∣∣
(1−2)

=
∂ϕadd.

∂x

∣∣∣∣∣
(5−6)

= 0,
∂ϕadd.

∂z

∣∣∣∣∣
(1−5)

=
∂ϕadd.

∂x

∣∣∣∣∣
(6−2)

= 0, (69)
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and

ϕadd.|(1−2) = Φ|(1−2) , ϕadd.|(5−6) = Φ|(5−6) . (70)

Unfortunately, for these boundary conditions, there is no analytical solution of
Laplace’s equation obtained by the method of separation of variables. Therefore, in
order to obtain a solution of this problem, we resort to the discrete FDM. As in the
case of the potential Φ in the “external” fluid domain, equations of the form described
by equations (53) are written for all nodal points of the assumed grid in the rectangular
fluid domain (1, 5, 6, 2 in Fig. 1). The solution of these equations is expressed in the
following form:

(ϕadd.) = [FI] (Φ) , (71)

where [FI] is a rectangular matrix, and (Φ) is a vector matrix containing values of Φ at
nodal points at boundaries (1–2) and (5–6). The values are taken from equation (63).
With this formula, one may calculate the fluid pressure and solve the plate equation.

6. Equation of the Plate Vibrating in Fluid

For small deflections of the plate, its motion is described by equation (3). Knowing
the potential functions in the respective fluid domains (at the upper and lower surfaces
of the plate) and substituting equation (4) into the plate equation, one obtains

β
∂2w

∂t2 +
∂4w

∂x4 = γ

[
∂φ

∂t
+
∂Φ
∂t
−

(
∂ϕ

∂t
+
∂ϕadd.

∂t

)]
, (72)

where

β =
mpl.

D∗
, γ =

ρ

D∗
. (73)

As mentioned above, the plate deflection may be expressed in terms of eigenfunc-
tions of the plate vibrating in air. Thus, it is described by the following formula:

w(x, t) =
∑

n
An(t) sin rn(x + b), rn =

nπ
2b
, n = 1, 2, . . . . (74)
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Substitution of this relation and equations (19) and (20) into equation (72) and simple
manipulations, give

β
∑
n=1

Än sin rn(x + b) +
∑
n=1

An(rn)4 sin rn(x + b) =

= γ

−∑
n=1

Än(t)
1
rn

tanh rnh · sin rn(x + b)+

+
∑
m=1

[
Ḋ1

m
cosh(k∗mx)
cosh(k∗mb)

+ Ḋ2
m

sinh(k∗mx)
sinh(k∗mb)

]
+

−
∑
n=1

Än(t)
1
rn

1
tanh rnd

· sin rn(x + b) − Ė0+

−
∑
m=1

(−1)m
[
Ė1

m
cosh(kmx)
cosh(kmb)

+ Ḋ2
m

sinh(kmx)
sinh(kmb)

]
+

(
Φ̇ − ϕ̇add.

)
plate

}
,

rn =
nπ
2b
, km =

mπ
d
, k∗m =

2m − 1
2h

π, m = 1, 2, . . . , n = 1, 2, . . . .

(75)

The partial time derivative of the potential ϕadd. in this equation is obtained by differ-
entiation of equation (71):

(ϕ̇add.) = [FI]
(
Φ̇
)
. (76)

At the same time, equation (67) is used to calculate the partial time derivative of the
“external” potential Φ. Differentiation of this equation gives(

Φ̇(3)
)

= ẍg(3) · (FA) + [FC] ·
(
Ä(3)

)
+
∂

∂t
(
FB(1)

)
. (77)

In calculating the third term on the right-hand side of this equation, we may use rela-
tion (68) and the first formula in equations (58). Thus, in a formal way, one obtains

∂

∂t
(
FB(1)

)
= Φ̇(3)(R2

(1)) =
3

DT
[
Φ(3)(R2

(1)) − R1
(1)

]
. (78)

The remaining parameters entering equation (75), i.e. Ḋ1
m, Ḋ2

m (m = 1, 2 . . .) and
Ė0, Ė1

m, Ė2
m (m = 1, 2, . . .), may be easily obtained from the vector formulae (52). To

this end, it is sufficient to introduce Ä in place of Ȧ in the latter equations. With
such manipulations, equation (75), describing the plate motion, is reduced to an equa-
tion containing only one set of parameters, namely An(t) (n = 1, 2, . . . , na) together
with their second time derivatives. Multiplication of this equation in succession by
sin rn(x + b), n = 1, 2, . . . , na and then integration of the ensuing result in the range
(−b ≤ x ≤ b) leads to the algebraic system of equations

[M A] ·
(
Ä(3)

)
+ [MB] ·

(
A(3)

)
= (P) . (79)
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With respect to the second formula in equations (58), the second time derivative
in this equation is expressed in the following form:(

Ä(3)
)

=
6

DT 2
(
A(3)

)
−

6
DT 2

(
A(1) + DT · Ȧ(1) +

DT 2

3
Ä(1)

)
. (80)

Substitution of this relation into equation (79) gives[
M A∗

]
·
(
A(3)

)
= (P∗) , (81)

where the matrices [M A∗] and (P∗) depend on the known solutions for An(t) and Φ(t)
at the previous moment of time, i.e. at t = t(1). Substitution of the solution An(t = t(3))
of the above equation into equations (59) allows us to calculate a solution correspond-
ing to the subsequent moment of time (at t = t(2) = t(1) + ∆t). Knowing the solution
for An(t = t(2)), it is a simple task to calculate the relevant potentials and thus the
pressure and velocity field in the entire fluid domain. At the same time, a deflection
of the plate may be obtained. In this way, it is possible to find solutions of the problem
at subsequent points in time.

7. Numerical Experiments

In order to learn more about the time-dependent problem considered, and to illustrate
procedures developed in the preceding sections, some numerical examples are pre-
sented below. The solution of the problem is applied to specific cases of water wave
generation in fluid of constant depth. The problem considered corresponds directly to
the generation of waves in a laboratory flume of finite length. For such a finite fluid
domain and a limited elapse of time measured from the starting point, the solution in
the finite fluid domain mimics the solution in the infinite fluid domain. Thus, let us
consider wave generation in a fluid domain by a piston-type generator, which starts to
move at a certain point in time. Three cases are considered, corresponding to surface
waves of lengths λ = 1.5 m, 2.0 m and 2.5 m. For all the cases, the initial depth H of
the fluid layer is the same and equal to 0.6 m. The submerged plate is placed at a dis-
tance of L = 2.0 m from the generator face. In each of the three cases, the same plate
is installed at a specific distance from the fluid bottom. This steel plate of thickness
δ = 0.004 m and span 2b = 1.0 m is simply supported at its ends. In order to assess
the influence of the gap between the plate and the fluid bottom on the dynamics of
the plate, a set of the gap widths is considered, which correspond to c = 0.02, 0.03,
· · ·, 0.11 m in Fig. 1. An artificial boundary, which makes it possible to confine our
attention to a finite fluid domain, is assumed at a distance of 11.0 m from the generator
face. Waves reflected from this boundary are delayed in relation to the start of wave
generation (generator motion). And therefore, for the elapse of time not exceeding ten
seconds, measured from this starting point, the reflected waves do not disturb the plate
motion (this elapse of time is too short for the reflected waves to travel that distance).
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Fig. 2. Surface elevations at selected points in time
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Fig. 3. Time distribution of the horizontal components of the fluid velocity at the lower (a)
and upper (b) mid-span points of the plate

This feature may be observed in Fig. 2, where the plots represent the free surface
elevation at selected points in time.
From these plots, it may be seen that the procedures described in the preceding sec-
tions leads to plausible results. Since the plate is placed relatively far off the free
surface, and since its deflections are small, the free surface elevation is practically
unaffected by the plate motion. In contrast, the width of the gap between the plate and
the fluid bottom is important in calculating velocity and pressure fields in the vicinity
of the plate, as well as the deflection of the plate. All these quantities depend on time
and space, and therefore, in illustrating numerical results, we confine our attention
to points in space corresponding to the mid-span point of the plate, which seem rep-
resentative of the problem discussed. And therefore, in the first step, the horizontal
components of the fluid velocity are calculated at the lower and upper mid-span points
of the plate. The results obtained are illustrated in Fig. 3, where the plots show the
distribution of these components in time for two gap widths (c = 0.04 m and c = 0.08
m in Fig. 1) and the generator frequency corresponding to the surface wave of length
λ = 2.0 m.
Similar distributions hold for the remaining waves, i.e. for λ = 1.5 m and λ = 2.5
m. From these plots, it may be seen that there is a relatively big difference between



Flow-induced Vibrations of a Horizontal Elastic Band Plate Submerged . . . 127

velocities at points of the lower and upper surfaces of the plate. Another important
characteristic of the problem is the fluid pressure at points of the plate surfaces. Since
we are dealing with different widths of the gap between the plate and the fluid bottom,
it is reasonable to normalize pressure at the lower and upper mid-span points of the
plate by means of the hydrostatic pressure of the fluid at rest at the central point of
the plate. Hence, the normalized pressure is

p(t) = pnorm. =
1

pstat
pcal. =

1
ρg(H − zpl)

pcal. (82)

where pcal. denotes the pressure described by equation (4) and zpl = d + δ/2 (see
Fig. 1).
For the two gap widths, the normalized pressure distribution in time is shown in Fig. 4.
The plots in Fig. 4a and Fig. 4b show the pressure distribution at the lower and upper
mid-span points of the plate, respectively. The resultant pressure force acting on the
plate is shown in Fig. 4c, where the plots show the difference in the fluid pressure
corresponding to the upper and lower points of the plate. It is important to note that,
in the discussed cases, the dynamic pressure may exceed the hydrostatic one by 30%.
From the plots in this figure, it is seen that the pressure load on the plate depends on
the width of the gap between the plate and the fluid bottom. In order to illustrate the
solution obtained, the deflection of the mid-span point of the plate is also calculated.
The plots in Fig. 5 show the time distribution of the vertical displacement of the central
mid-span point of the plate corresponding to selected gap widths.
The plots in Figures 3, 4, and 5 represent the time distribution of the above-mentioned
parameters, i.e. the horizontal velocity, the pressure and the vertical displacement of
the mid-span point of the plate. In order to compare solutions for selected gap widths,
it is reasonable to resort to a single number which can characterize an important fea-
ture of the quantity distributed in time. Since the distributions correspond to a finite
elapse of time, the maximum value of the given quantity within this range of time
is chosen as representative of this quantity. And thus, such numbers are calculated
for the resultant of fluid pressure and the displacement associated with the mid-span
point of the plate. In order to obtain a better insight into the solution, the mid-span
plate displacement is normalized by means of a static deflection corresponding to the
own weight of the plate. Thus, the following relation is assumed:

w(t) = wnorm. =
1

wstat
wcal. =

384D∗

5ql4
wcal., (83)

where q = g(ρs − ρ) · δ and l = 1.0 m.
Some results of computations are shown in Fig. 6 , where the maximum values of the
pressure resultant and displacements, corresponding to the central point of the plate,
are marked versus the gap widths.
From these graphs, it may be seen that, for a specific wave generation (length of wa-
ter wave), one may expect significant changes in pressure forces, and thus in plate
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Fig. 4. Time distribution of the fluid pressure at the lower (a), upper (b), and mid-span points
(c) of the plate and the resultant of pressure at these points

deflections, associated with a specific width of the gap between the plate and the fluid
bottom.

8. Concluding Remarks

The formulation developed in this paper makes it possible to calculate pressure forces
loading a horizontal elastic band plate submerged in fluid of constant depth. These
forces result from gravitational waves propagating within the fluid and disturbances
in fluid velocity related to the vibrations of the plate. With the standing wave solution,
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Fig. 5. Time distribution of plate deflection at the mid-span central point of the plate

Fig. 6. Maximum resultant of the normalized pressure (a) and the normalized deflection (b)
of the plate at its mid-span versus the gap width

developed in the third section of this study, it is possible to calculate a set of eigenfre-
quencies of this plate vibrating in fluid. Compared to vibrations of the plate in air, one
can expect a significant reduction in these frequencies due to the co-vibrating mass
of fluid. However, the most important result of investigations developed above is an
assessment of the influence of the gap width on fluid forces loading this plate, and
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thus on its deflection. It was shown that, for a specific problem (length of the surface
wave, span of the plate, and width of the gap between the plate and the fluid bottom),
there exists a gap width which leads to extreme values of the pressure loading this
plate and plate deflection. This theoretical result may be important in constructing
plate-like engineering structures installed in offshore zones of seas.
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