PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of precise point positioning algorithm to support advanced driver assistant functions for inland vessel navigation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bridge passing and passing waterway locks are two of the most challenging phases for inland vessel navigation. In order to be able to automate these critical phases very precise and reliable position, navigation and timing (PNT) information are required. Here, the application of code-based positioning using signals of Global Navigation Satellite Systems (GNSS) is not sufficient anymore and phase-based positioning needs to be applied. Due to the larger coverage area and the reduction of the amount of correction data Precise Point Positioning (PPP) has significant advantages compared to the established Real Time Kinematic (RTK) positioning. PPP is seen as the key enabler for highly automatic driving for both road and inland waterway transport. This paper gives an overview of the current status of the developments of the PPP algorithm, which should finally be applied in advanced driver assistant functions. For the final application State Space Representation (SSR) correction data from SAPOS (Satellitenpositionierungsdienst der deutschen Landesvermessung) will be used, which will be transmitted over VDES (VHF Data Exchange System), the next generation AIS.
Twórcy
autor
  • German Aerospace Centre (DLR), Neustrelitz, Germany
autor
  • German Aerospace Centre (DLR), Neustrelitz, Germany
Bibliografia
  • 1. Blewitt, G.: An Automatic Editing Algorithm for GPS data. Geophysical Research Letters. 17, 3, 199–202 (1990). https://doi.org/10.1029/GL017i003p00199.
  • 2. Boehm, J., Schuh, H.: Vienna Mapping Functions. Presented at the 16th EVGA Working Meeting , Leipzig, Germany (2003).
  • 3. Freda, P., Angrisano, A., Gaglione, S., Troisi, S.: Time-differenced carrier phases technique for precise GNSS velocity estimation. GPS Solutions. 19, 2, 335–341 (2015). https://doi.org/10.1007/s10291-014-0425-1.
  • 4. Geo++: State Space Representation Format (SSRZ), http://www.geopp.de/wp-content/uploads/2020/09/gpp_ssrz_v1_0.pdf, last accessed 2021/01/12.
  • 5. Hesselbarth, A., Medina, D., Ziebold, R., Sandler, M., Hoppe, M., Uhlemann, M.: Enabling Assistance Functions for the Safe Navigation of Inland Waterways. IEEE Intelligent Transportation Systems Magazine. 12, 3, 123–135 (2020). https://doi.org/10.1109/MITS.2020.2994103.
  • 6. IALA: IALA: G1139 - ed.3 the technical specification of VDES. (2019).
  • 7. J. A. Klobuchar: Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems. AES-23, 3, 325–331 (1987). https://doi.org/10.1109/TAES.1987.310829.
  • 8. JAVAD GNSS: GNSS Receiver External Interface Specification. (2021).
  • 9. Ma, H., Zhao, Q., Verhagen, S., Psychas, D., Liu, X.: Assessing the Performance of Multi-GNSS PPP-RTK in the Local Area. Remote Sensing. 12, 20, (2020). https://doi.org/10.3390/rs12203343.
  • 10. Psychas, D., Verhagen, S.: Real-Time PPP-RTK Performance Analysis Using Ionospheric Corrections from Multi-Scale Network Configurations. Sensors. 20, 11, (2020). https://doi.org/10.3390/s20113012.
  • 11. Raulefs, R.: Cellular VHF Data Exchange System. In: OCEANS 2019 MTS/IEEE SEATTLE. pp. 1–5 (2019). https://doi.org/10.23919/OCEANS40490.2019.8962676.
  • 12. Saastamoinen, J.: Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. In: Henriksen, S.W., Mancini, A., and Chovitz, B.H. (eds.) The Use of Artificial Satellites for Geodesy. pp. 247–251 American Geophysical Union (AGU) (1972). https://doi.org/10.1029/GM015p0247.
  • 13. SCIPPPER: Schleusenassistenzsystem basierend auf PPP und VDES für die Binnenschifffahrt: http://scippper.de/, last accessed 2021/04/01.
  • 14. Soon, B.K.H., Scheding, S., Lee, H.-K., Lee, H.-K., Durrant-Whyte, H.: An approach to aid INS using time-differenced GPS carrier phase (TDCP) measurements. GPS Solutions. 12, 4, 261–271 (2008). https://doi.org/10.1007/s10291-007-0083-7.
  • 15. Subirana, J.S., Zornoza, J.M.J., Hernández-Pajares, M.: GNSS Data Processing, Vol. I: Fundamentals and Algorithms. ESA Communications (2013).
  • 16. Takasu, T., Yasuda, A.: Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. Presented at the International Symposium on GPS/GNSS , International Convention Center Jeju, Korea (2009).
  • 17. Tétreault, P., Kouba, J., Héroux, P., Legree, P.: CSRS-PPP: AN INTERNET SERVICE FOR GPS USER ACCESS TO THE CANADIAN SPATIAL REFERENCE FRAME.Geomatica. 59, 1, 17–28 (2005). https://doi.org/10.5623/geomat-2005-0004.
  • 18. Teunissen, P.J.G.: The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy. 70, 1, 65–82 (1995). https://doi.org/10.1007/BF00863419.
  • 19. Wabbena, G., Schmitz, M., Bagge, A.: PPP-RTK: Precise Point Positioning Using State-Space Representation in RTK Networks. Presented at the Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005) , Long Beach, CA (2005).
  • 20. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H.: Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth. 102, B3, 5005–5017 (1997). https://doi.org/10.1029/96JB03860.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-748ecaa7-541f-4db2-ae13-c6086a2cb6ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.