PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers) and reusability.
Rocznik
Strony
47--55
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Technical Physics and Applied Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Technical Physics and Applied Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Technical Physics and Applied Mathematics, Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Sheldon, R.A. & van Bekkum, H. (Eds.) Fine Chemicals through Heterogeneous Catalysis. Wiley-VCH 2001.
  • 2. Mitsudomea, T. & Kaneda, K. (2013). Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 15, 2636–2654. DOI: 10.1039/C3GC41360H.
  • 3. Zhao, P., Feng, X., Huang, D., Yang, G. & Astruc, D. (2015) Basic concepts and recent advances in nitrophenol reduction by gold - and other transition metal nanoparticles. Coord. Chem. Rev. 287, 114–136. DOI:10.1016/j.ccr.2015.01.002.
  • 4. Santos, K. de O., Elias, W.C., Signori, A.M., Giacomelli, F.C., Yang, H. & Domingos, J.B. (2012). Synthesis and Catalytic Properties of Silver Nanoparticle−Linear Polyethylene Imine Colloidal Systems. J. Phys. Chem. C 116, 4594−4604. DOI: 10.1021/jp2087169.
  • 5. Gao, S., Zhang, Z., Liu, K. & Dong, B. (2016). Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl. Catal. B: Environ 188, 245–252. DOI: 10.1016/j.apcatb.2016.01.074.
  • 6. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Bagherzadeh, M. & Safari, R. (2015). Immobilization of copper nanoparticles on perlite: Green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. J. Mol. Cat. A Chem. 400, 22–30. DOI: 10.1016/j.molcata.2015.01.032.
  • 7. Hatamifard, A., Nasrollahzadeh, M. & Lipkowski J. (2015). Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv. 5, 91372–91381. DOI: 10.1039/C5RA18476B.
  • 8. Rostami-Vartooni, A., Nasrollahzadeh, M. & Alizadeh, M. (2016). Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: Application of the particles for catalytic reduction of organic dyes. J. Coll. Interf. Sci. 470, 268–275. DOI: 10.1016/j.jcis.2016.02.060.
  • 9. Tajbakhsh, M., Alinezhad, H., Nasrollahzadeh, M. & Kamali, T.A. (2016). Green synthesis of the Ag/HZSM-5 nanocomposite by using Euphorbia heterophylla leaf extract: A recoverable catalyst for reduction of organic dyes. J. Alloy. Compd. 685, 258–265. DOI: 10.1016/j.jallcom.2016.05.278.
  • 10. Rostami-Vartooni, A., Nasrollahzadeh, M. & Alizadeh, M. (2016). Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo Eds. J. Alloy. Compd. 680, 309–314. DOI: 10.1016/j.jallcom.2016.04.008.
  • 11. Nasrollahzadeh, M., Atarod, M., Jaleh, B. & Gandomirouzbahani, M. (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Inter. 42, 8587–8596. DOI: 10.1016/j.ceramint.2016.02.088.
  • 12. Atarod, M., Nasrollahzadeh, M. & Sajadi, S.M. (2015). Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Adv. 5, 91532–91543. DOI: 10.1039/c5ra17269a.
  • 13. Fakhri, P., Nasrollahzadeh, M. & Jaleh, B. (2014). Graphene oxide supported Au nanoparticles as an efficient catalyst for reduction of nitro compounds and Suzuki–Miyaura coupling in water. RSC Adv. 4, 48691–48697. DOI: 10.1039/C4RA06562J.
  • 14. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Alizadeh, M. & Bagherzadeh, M. (2016). Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J. Col. Interf. Sci. 466, 360–368. DOI: 10.1016/j.jcis.2015.12.036.
  • 15. Atarod, M., Nasrollahzadeh, M. & Sajadi, S.M. (2016). Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J. Col. Interf. Sci. 465, 249–258. DOI: 10.1016/j.jcis.2015.11.060.
  • 16. Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev. 312, 99–148. DOI: 10.1016/j.ccr.2015.12.005.
  • 17. Julkapli, N.M. & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. Int. J. Hydr. Energ. 40, 948–979.
  • 18. Xu, Y., Sheng, K., Li, Ch. & Shi, G. (2010). Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 4(7), 4324–4330. DOI: 10.1021/nn101187z.
  • 19. Xia, X.H., Chao, D.L., Zhang, Y.Q., Shen, Z.X. & Fan, H.J. (2015). Three-dimensional graphene and their integrated electrodes. Nano Today 9(6), 785–807. DOI: 10.1016/j.nantod.2014.12.001.
  • 20. Fang, Q., Shen, Y. & Chen, B. (2015). Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review. Chem. Engine. J. 264, 753–771. DOI: 10.1016/j.cej.2014.12.001.
  • 21. Li, J., Liu, Ch-Y. & Liu, Y. (2012). Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430. DOI: 10.1039/C2JM16386A.
  • 22. Dubey, S.P., Dwivedi, A.D., Kim, I-Ch, Sillanpa, M., Kwon, Y-N. & Lee, Ch. (2014). Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Engine. J. 244, 160–167. DOI: 10.1016/j.cej.2014.01.042.
  • 23. He, Y., Zhang, N., Gong, Q., Li, Z., Gao, J. & Qiu, H. (2012). Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589. DOI:10.1016/j.matchemphys.2012.04.011.
  • 24. Wu, T., Chen, M., Zhang, L., Xu, X., Liu, Y., Yan, J., Wang, W. & Gao, J. (2013). Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J. Mater. Chem. A 1, 7612–7621. DOI: 10.1039/C3TA10989E.
  • 25. ICDD PDF-2 Database Release 1998, ISSN 1084–3116.
  • 26. Kondratowicz, I., Żelechowska, K. & Sadowski, W. (2015). Optimization of graphene oxide synthesis and its reduction. In O. Fesenko & L. Yatsenko (Eds.), Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies (pp. 467–484).
  • 27. Kondratowicz, I. (2014). Porous graphene electrodes. Synthesis, modifications and characterization. Unpublished Master Thesis. Gdansk University of Technology, Gdansk, Poland.
  • 28. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice C.A. & Ruoff, R.S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152. DOI: 10.1016/j.carbon.2008.09.045.
  • 29. Lisiecki, I. & Pileni, M.P. (1995). Copper Metallic Particles Synthesized “in Situ” in Reverse Micelles: Influence of Various Parameters on the Size of the Particles. J. Phys. Chem. 99, 5077–5082. DOI: 10.1021/j100014a030.
  • 30. Wunder, S., Polzer, F., Lu, Y. & Mei, Y. (2010). Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C. 114, 8814−8820. DOI: 10.1021/jp101125j.
  • 31. Wunder, S., Lu, Y., Albrecht, M. & Ballauff, M. (2011). Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-induced Surface Restructuring. ACS Catal. 1, 908−916. DOI: 10.1021/cs200208a.
  • 32. Gu, S., Wunder, S., Lu, Y. & Ballauff, M. (2014). Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. J. Phys. Chem. C 118, 18618−18625. DOI: 10.1021/jp5060606.
  • 33. Sherazi, S.T.H., Soomro, R.A., Uddin, S. & Memon, N. (2014). Synthesis and characterizations of highly efficient copper nanoparticles and their use in ultrafast catalytic degradation of organic dyes. Adv. Mater. Res. 829, 93–99. DOI: 10.4028/www.scientific.net/AMR.829.93.
  • 34. Hang, L., Zhao, Y., Zhang, H., Liu, G., Cai, W., Li, Y. & Qu, L. (2016). Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance. Acta Mater. 105, 59–67. DOI:10.1016/j.actamat.2015.12.029.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-748de209-904c-4ddd-b782-3f9d69aeb000
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.