PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie wpływu hydrożelu na zdolności retencyjne zielonych dachów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Investigation of the influence of hydrogel addition on the retention capacity of green roofs
Konferencja
ECOpole’15 Conference (14-17.10.2015, Jarnołtówek, Poland)
Języki publikacji
PL
Abstrakty
PL
Postępujący rozwój i urbanizacja wpływają na kształtowanie odpływu wód opadowych ze zlewni. Wzrost stopnia uszczelnienia powierzchni powoduje zwiększanie natężenia spływu powierzchniowego, co często przyczynia się do podwyższenia zagrożenia powodziowego. W związku z tym na terenach silnie zurbanizowanych, obok tradycyjnych systemów kanalizacji deszczowej, coraz częściej stosuje się rozwiązania mające na celu zagospodarowanie wód deszczowych w miejscu wystąpienia opadu. Rozwiązania te noszą nazwę zrównoważonych systemów drenażu. Jednym z takich rozwiązań są zielone dachy. W artykule przedstawiono wyniki badań zdolności retencyjnych czterech modeli zielonych dachów, na których zastosowano zróżnicowane substraty dachowe. Jedno podłoże glebowe stanowił tradycyjny substrat dachowy bez domieszek, dwa podłoża stanowiły substraty z domieszkami hydrożelu, odpowiednio wynoszącymi około 1 i 0,25% wagowych. Jako czwarte podłoże zastosowano substrat dachowy z domieszką keramzytu i perlitu ogrodniczego. Na modelach zielonych dachów nie zastosowano roślinności, aby badania dotyczyły wyłącznie zdolności retencyjnych zastosowanych substratów. Pierwsza część eksperymentu opisanego w artykule polegała na badaniu zdolności retencyjnych substratów dachowych podczas pierwszego symulowanego opadu oraz opadu występującego po długim okresie bezdeszczowym (substrat i inne elementy modelu zielonego dachu w stanie powietrzno suchym). W tym przypadku najlepsze zdolności retencyjne wykazał substrat z zawartością ok. 1% hydrożelu. Drugą co do wartości pojemnością retencyjną odznaczał się substrat zawierający ok. 0,25% wag. hydrożelu. Z kolei najsłabsze zdolności retencyjne posiadał substrat z dodatkiem materiałów silnie porowatych (keramzytu i perlitu ogrodniczego). Druga część eksperymentu polegała na badaniu zdolności retencyjnych substratów podczas opadu, jaki wystąpił po okresie bezdeszczowym, wynoszącym 4 doby. Otrzymane wyniki wskazują, że w tym przypadku najlepsze zdolności retencyjne wykazał substrat zawierający ok. 0,25% hydrożelu, drugą co do wartości chłonność posiadał substrat z dodatkiem i keramzytu, i perlitu ogrodniczego, trzecią co do wartości chłonność wykazywał substrat bez żadnych dodatków. Najsłabszą chłonność w tym przypadku posiadał substrat z dodatkiem około 1% hydrożelu.
EN
Progressive economic development and urbanisation influence the characteristics of the stormwater runoff. Persistent sealing of drainage basin surface prompts the rise of runoff intensity. This results in a rise of threat of flood. Therefore, in urbanized areas in addition to the traditional sewer systems are used the ecological sustainable urban drainage systems (SUDS). One of these solutions are the green roofs. The paper presents the results of investigation of retention capacities of 4 green roof models with following substrates: the typical green roof substrate, the substrate with addition of about 1% of hydrogel, the substrate with addition of about 0.25% of hydrogel, the substrate with addition of expanded clay and perlite. In the models weren’t applied the vegetation layers in order to explore only the retention capacities of substrates and drainage layers. The objective of the first part of experiment described in the paper was to investigate the retention capacities of roof substrates during the first rain and the rain that occurred after long antecedent dry period of time (the substrates and drainage layers Badanie wpływu hydrożelu na zdolności retencyjne zielonych dachów 633 were air-dry). The best retention capacity had in this case the substrate with addition of about 1% of hydrogel. The second largest retention capacity had the substrate with addition of about 0.25% of hydrogel. The weakest retention capacity had the substrate with addition of expanded clay and perlite. The objective of second part of experiment was to investigate the retention capacities of green roof substrates after 4 antecedent dry days. In this case the best retention capacity had the substrate with addition of about 0.25% of hydrogel. The second largest retention capacity had the substrate with addition of expanded clay and perlite. The weakest retention capacity had the substrate with addition of about 1% of hydrogel.
Rocznik
Strony
625--632
Opis fizyczny
Bibliogr. 20 poz., wykr., tab.
Twórcy
autor
  • Instytut Inżynierii Środowiska, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Brzeźnicka 60a, 42-200 Częstochowa, tel. 34 325 09 17
autor
  • Instytut Inżynierii Środowiska, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Brzeźnicka 60a, 42-200 Częstochowa, tel. 34 325 09 17
autor
  • Instytut Inżynierii Środowiska, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Brzeźnicka 60a, 42-200 Częstochowa, tel. 34 325 09 17
autor
  • Instytut Inżynierii Środowiska, Wydział Infrastruktury i Środowiska, Politechnika Częstochowska, ul. Brzeźnicka 60a, 42-200 Częstochowa, tel. 34 325 09 17
Bibliografia
  • [1] Burszta-Adamiak E. Analysis of the retention capacity of green roofs. J Water Land Dev. 2012;16(I-IV):3-9. http://www.itp.edu.pl/wydawnictwo/journal/16_2012_I_VI/artykuly/Burszta%20Adamiak.pdf.
  • [2] Burszta-Adamiak E, Mrowiec M. Modelling of green roofs’ hydrologic performance using EPA’s SWMM. Water Sci Technol. 2013;68(1):36-42. DOI: 10.2166/wst.2013.219.
  • [3] Mrowiec M, Sobczyk M. Ekologiczne zagospodarowanie wód opadowych - zielone dachy. Woda-Środowisko-Obszary Wiejskie. 2014;14(48):53-61. http://www.itep.edu.pl/wydawnictwo/woda/zeszyt_48_2014/artykuly/Mrowiec%20Sobczyk.pdf.
  • [4] Karczmarczyk A, Mosiej J. Racjonalne zagospodarowanie wód opadowych na terenach o zwartej i rozproszonej zabudowie. Ekoinnowacje na Mazowszu. Poradnik transferu technologii w ochronie środowiska. Cz. II - Gospodarka wodna. 2011. http://www.ekoinnowacjenamazowszu.pl/files/podrecznik/misc/Racjonalne_zagospodarowanie_wod_opadowych.pdf.
  • [5] Getter KL, Rowe DB, Andresen JA. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng. 2007;31:225-231. DOI: 10.1016/j.ecoleng.2007.06.004.
  • [6] Malmur R, Mrowiec M. Zbiornik retencyjno-przerzutowy jako nowe rozwiązanie przerzutu ścieków opadowych do odbiorników wodnych. Roczn Ochr Środow. 2013;15:2339-2351. http://ros.edu.pl/images/roczniki/2013/pp_2013_153.pdf.
  • [7] USEPA. Reducing Stormwater Costs through Low Impact Development (LID) Strategies and Practices, EPA 841-F-07-006, December 2007. http://www.nrc.gov/docs/ML1102/ML110270042.pdf.
  • [8] Ociepa E. Sposoby ograniczenia niekorzystnego wpływu zrzutu ścieków opadowych. Chem Dydakt Ekol Metrol. 2011;16(1-2):47-50. http://tchie.uni.opole.pl/freeCDEM/CDEM11/Ociepa_CDEM16%281-2%29.pdf.
  • [9] Mrowiec M. Wyznaczanie objętości zbiorników infiltracyjnych z zastosowaniem wzorów IDF. Inż Ochr Środow. 2011;14(1):73-86. https://is.pcz.pl/static/pdf/2011/zeszyt1/2011_1_7-Mrowiec.pdf.
  • [10] Geiger W, Dreiseitl H. Nowe sposoby odprowadzania wód deszczowych. Poradnik. Bydgoszcz: Wyd PROJPRZEM-EKO Sp.z.o.o.; 1999.
  • [11] Burszta-Adamiak E. Zagospodarowanie spływów opadowych za pomocą systemów bioretencji. Rynek Instal. 2011;3:91-93. http://www.rynekinstalacyjny.pl/artykul/id1734,zagospodarowanie-splywowopadowych-za-pomoca-systemow-bioretencji.
  • [12] Burszta-Adamiak E, Łomotowski J, Wiercik P. Zielone dachy jako rozwiązania poprawiające gospodarkę wodami opadowymi w miastach. Inż Ekol. 2014;39:26-32. DOI: 10.12912/2081139X.47.
  • [13] Czemiel-Berndtsson J, Bengtsson L, Jinno K. Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng. 2009;35:369-380. DOI: 10.1016/j.ecoleng.2008.09.020.
  • [14] Czemiel-Berndtsson J. Green roof performance towards management of runoff water quantity and quality: a review. Ecol Eng. 2010;36:351-360. DOI: 10.1016/j.ecoleng.2009.12.014.
  • [15] Bengtsson L, Grahn L, Olsson J. Hydrological function of a thin extensive green roof in southern Sweden. Nordic Hydrol. 2005;36(3):259-268. http://hr.iwaponline.com/content/36/3/259.
  • [16] Ociepa-Kubicka A. Ekonomiczne i ekologiczne aspekty zielonych dachów. Zesz Nauk Wyższej Szkoły Bankowej we Wrocławiu. 2015;15(2):289-296. http://ojs.wsb.wroclaw.pl/index.php/WSBRJ/article/view/105.
  • [17] Savi T, Marin M, Boldrin D, Incerti G, Andri S, Nardini A. Green roofs for a drier world: Effects of hydrogel amendment on substrate and plant water status. Sci Total Environ. 2014;490:467-476. DOI: 10.1016/j.scitotenv.2014.05.020.
  • [18] Farrell C, Ang XQ, Rayner JP. Water-retention additives increase plant available water in green roof substrates. Ecol Eng. 2013;52:112-118. DOI: 10.1016/j.ecoleng.2012.12.098.
  • [19] Mentens J, Raes D, Hermy M, Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape Urban Plan. 2006;77:217-226. DOI:10.1016/j.landurbplan.2005.02.010.
  • [20] Young T, Cameron DD, Sorrill J, Edwards T, Phoenix GK. Importance of different components of green roof substrate on plant growth and physiological performance. Urban Urban Green. 2014;13:507-516. DOI: 10.1016/j.ufug.2014.04.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-748d17c4-6e3a-4021-b8c3-814bc30ee012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.