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Abstract

In this paper are considered analogies between elliptical-slide bearing occurring in artificial robots and elliptical
natural human joints as well artificial human femoral prosthesis. The comparisons between elliptical human femoral
prosthesis and mechanical spherical bearings indicate the advantages implicated from the use of elliptical slide bearings. To
prove above statement we describe some remarks referring the elliptical femoral prosthesis and natural human joints.
Numerous contemporary studies and experimental measurements regarding the human hip joints indicate, that femoral head
is, in fact naturally elliptical. Therefore, the femoral elliptical complete prosthesis as well half prosthesis must be better
adapted to the natural hip joint with elliptical bonehead and neck of the femur. The elliptical femoral prosthesis was
designed for solving the problem of the relationship between the femoral prosthesis head and the anatomical acetabulum
and to minimize the various incidence namely wear protrusion and pain effects. Performed clinical tests indicate that
elliptical prosthesis head have the most advanced technological shapes because are based on the anatomy and
biomechanics features of the natural human hip joint. The same aspects are occurring during functioning the elliptical slide
bearing in artificial robots. The mechanics of elliptical-slide bearings can be taken as the appropriate shape in the respect to
the operating treatment. Taking into account the hydrodynamic theory of lubrication of cooperating surfaces we must finally
find pressure distributions, friction forces, friction coefficients and wear. To prepare this calculations we ought at first
determine and calculate the fields of the regions of lubrication on the internal surface lying on the elliptical surfaces and on
the external elliptical surface of the sleeve. Surface lubrication regions consist of the sums of spherical triangle, which are
lying on the abovementioned surface. In this paper are determined the formulas for the field calculations of elliptical
triangle with the three vertexes (points) for coordinates which are foreseen measured.
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1. Substantiation of elliptical bearing application in robots

The humanoid robots with artificial spherical slide bearings presented in Fig. 1 have not
harmonic motions and the power transformation is not regular.

The bone head of natural human hip joint is not spherical but elliptical. This fact is confirmed by
the numerous anatomical and biomechanical studies on human hip joint, by many scientific literature
reports as well long-term results obtained by other Authors [1-8]. We can observe the asymmetrical
distribution of the layer of cartilage lying on the bone head surface. The cartilage layer is thickest at
the upper pole and thinnest at the equator. From this fact follows, that the head to be elliptical with a
wider diameter, a, along the axis of the femoral neck [6-7]. Such different distribution of cartilage is
presented in Fig. 2a. Symbol a denotes smaller diameter and b — wider diameter. The square of
eccentricity for human hip joint is defined by the following formula [9-12]:

22
&2 = b; (1)

For b=26.5 mm and a=25.0 mm, eccentricity obtained from formula (1) has the value:
€=0.3316678. If b=26.5 mm and ¢=26.0 mm then £=0.1933386. It is worth to noticed that the earth
eccentricity €=0.08182 is smaller than eccentricity of elliptical bonehead. In Fig. 2b, 2¢, 2d, 2e, 2f are
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presented various elliptical acetabulum prosthesis [1] and their localization in human body. Fig. 3a, 3b,
3¢, 3d are presenting the spherical and elliptical slide bearings and their localization in robot.

force of
impulse

Fig. 1. Robot with spherical bearings: a) Illustration of the robot, b) spherical gap height and eccentricities, c)
connection with the artificial sleeve in robot, d) the foot and leg of the humanoid robot

d) e

Fig. 2. Ellipsoidal shapes: a) different distribution of cartilage on the elliptical femoral head, b) one element
polyethylene, ellipsoidal acetabulum; ¢, d, e) bipolar acetabulum with the ellipsoidal pad, f) possibilities
of elliptical prosthesis localization

The lubrication region lying on the elliptical bearing surface may be calculated
approximately and exactly. The approximately value of the half surface of the rotational
ellipsoid with diameters a, b, a<b can be calculated with the error about 1.061% for p=1.6075
from the following formula:

S|~

a® +2(ab)?
3

Q=2rx (2)

Exactly value of the half-ellipsoid surface can be expressed from the following formula [11]:

2 2
Qy = ﬂ 1+(g—f;) +(le dxdy , (3a)

K(xy) X
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b
z=f(x,y):—\/a2 —x’ —y2, Kx,p): x? +y2 =a’. (3b)

a

After calculations, we obtain following series:

Q=22 1-3S e w1t L 3
=2 z ).—7T 38 ]8 (3¢)

n=1

(2n—1)2n+1

Fig. 3. Spherical and elliptical bearings: a) spherical journal together with a shaft and spherical sleeve,
b) individual elliptical ball with conical sleeve, c) elliptical journal together with a shaft and conical
sleeve, d) localization possibilities of the elliptical slide bearing between movable limbs occurring in
humanoid robots

Figure 4 shows the complete elliptical prosthesis of human hip joint and elliptical bonehead.

c)

Fig. 4. FElliptical friction nod: a) complete elliptical prosthesis of human hip joint, b) elliptical bone head,
¢) the elliptical sleeve in the humanoid robot bearing

2. The points on the elliptical surface of slide bearings

This intersection describes the geometry of elliptical journal and sleeve. Therefore at first we
define the coordinates of the point P (B,L) lying on the elliptical surface. Wide coordinate
B of point P lying on the rotational elliptical surface denotes the angle between perpendicular line
to the elliptical surface in point P and plain B=0 i.e. xOy (see Fig. 5a, b).

Length coordinate L of point P lying on the rotational elliptical surface denotes the
angle between the projection 11 of the basis vector r on the plain x0Oy and the plain L=0 (see
Fig. 5a, b).
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one eighth of
elliptical head

b)

Fig. 5. Coordinates for the arbitrary point laying on the elliptical head surface: a) wide coordinate B and length
coordinate L, b) connexion between Cartesian coordinates ( x,y,z) of arbitrary point P laying on the elliptical
surface and its wide B and length L coordinates

The relationship between coordinates (x,y,z) and (B,L) for arbitrary point laying on the
elliptical surface are as follows (compare Fig. 4b):

acosBcosL acosBsinL b 1— ¢’ sinB acosB
1

X=—f— Y= — = — = —— 4)
\ll—ezsinzB \/I—ezsinZB \ —&’sin’B \/I—ezsinzB
where -1/2<B<+n/2, -n<L<+m.

3. Lubrication region as the sum of elliptical triangle

Now we define the field of elliptical triangle lying on the ellipsoid journal. Lubrication region
consists of the sums of selected triangle surfaces. For example, Fig. 6a shows the one PQS of
numerous elliptical triangles lying on the elliptical surface. Symbols angP, angQ, angS denote
angles in vertexes P,Q,S respectively. Fig. 6b illustrates the real view of the triangle on the
elliptical surface and its developed view. The field of the elliptical triangle has the following form:

_(2a+b

‘qus

2
j (angP + angQ + angS — 71') (5)

Fig. 6. Elliptical triangles: a) Lubrication region Qs lying on the elliptical slide bearing surface as a sum of
elliptical triangles with the vertexes P,Q,S; b) Enlargements of elliptical triangle POS on the elliptical
surface; c) elliptical triangle on the plane

Unknown angP is the dihedral angle between plane pl(PQO) and pl(PSO).
Unknown angQ is the dihedral angle between plane pl(QPO) and pl(QSO).
Unknown angs is the dihedral angle between plane pl(SQO) and pl(SPO) see Fig. 7.
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Fig. 7. Elliptical triangle surface §p4s and planes pl(PQO), pl(PSO), pl(0OSO) to be created by the three points
P,0,0, and P,S,0 and Q,S,0 respectively, where O is the centre of ellipsoid

The three vertexes of the triangle have the following coordinates: P(Bp,Lp)=P(xp,yp,Zp),
Q(Bg,Lq)=Q(Xq,¥q,Zq), S(Bs,Ls)=S(xs,ys,zs). By virtue of the formulae (4), the relationships between
coordinales x,y,z and B,L for points P,Q,S are as follows:

acosB cosL acosB SmL b 1-¢? sian ©)
1/1 &2 sin B 1/1 &2 sin B l—gzsinzBp
acosB cosL acosB san b 1-¢&2 sian o
1/1 &2 sin B 1[1 &2 sin B 1[1—5zsin2Bq
_acos B cos L _acosB, sinL b 1-&2 sin B, )

\/1 &? sin B \/1—6‘ sin B l—gzsin2BS

If eccentricity € tends to zero, then above formulae will valid for spherical triangles. The angles
at the vertexes P,Q,S of the elliptical triangle are as follows:

‘AP‘I APS + qu BPS + Cpq CPS

angP = arccos , 9
\/Az + B2, +C> \/AZ + B2 +C2,
A A . +B B . .+C C
angQ = arccos ‘ w1 w4 w4 s (10)
\/Az +B +C2 \/Az +B +C2
S +‘ (11)
angS$ = arccos ,
\/Az +B +C2 \/Az +B +C2
where:
Yp “Zp Zp Xp p Yp
A, =A, = B =B, = c _=C, = (12)
rq qp , rq qp ’ rq qp ,
Yq Zq g *q Xqg Vg
Ay = Ay = Yoo s By, =B, =|" s Cyy =Cys = Yoo s (13)
Ya Zq Zg Xq g Vg
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v, z z, X X, y
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4. Pressure measurements and capacity calculation

The measured pressure values pi, p2, p3, ... in vertexes of particular triangles included in
lubrication region Qs are presented in Fig. 8a, b, c.
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Fig. 8. Lubrication region Qs :a) localization on the elliptical surface, b) region Qs as a sum of elliptical triangles
¢) measured pressure values in the vertexes of particular elliptical triangles

The load carrying capacity value has the following form:

C=(p2)'~02’ (15)

where the average value of the pressure in lubrication region is formulated as the arithmetic mean
of pressure values in particular vertexes of elliptical triangles and has following form:

1 n+2

Psx = Pr, n=2468,... .

”+2k:1

(16)

The lubrication region is defines as the sum of particular elliptical triangles in following form:

n
Qe = Qi iihsn =03+ 34 + g5 + Qusg + D567+ Dser + o+ Q1 jiit kst + oo
=1

for n=24648,.... (17)

5. Load carrying capacity in analytical form

Taking into account surface integral, we can show the load carrying capacity in following
form:

C=[[p(x.y,2)d02s.
Q5

(18)

Pressure function p(x,y,z) is presented in Fig. 9 and determined in elliptical surface Qs.
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f(x.y)¥= ‘\Z o p(xayaz)
o TI? 2E 7

one eighth of .

elliptical head Z:T(X-}’)

X0y

Fig. 9. Integral surface implementation

Transformation of the formula (18) from surface into double integral tends to the following
formula presenting the load carrying capacity:

2 2
c:{{j p[x,y,z:f(x,y)]\/l+(%) +(%j dxdy. (19)

Double integral is determined on the region Qxy(X,y) lying on the plane xOy and illustrated in
Fig. 8. Function z=f(x,y) is defined in Eq.(3b) and presented in Fig. 9. It is the elliptical surface.

6. Conclusions

In this paper is presented the method of lubrication region calculation on the elliptical surfaces
lying on the slide elliptical journal bearing applied in robots. The lubrication region consists of
elliptical triangles. The values of surfaces of elliptical triangles are derived.

Taking into account the total lubrication surface and mean arithmetic measured hydrodynamic
pressure, the formula for capacity calculation is presented.

The functionalities of elliptical human hip, humeral, elbow and other joints and elliptical hip,
humeral elbow human prosthesis as well elliptical slide bearings occurring in humanoid robots are
in this paper compared.
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