PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of a dipole on the phytoplankton community in a semi-enclosed basin of the southern Gulf of California, Mexico

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study assesses the impact of a dipole on the abundance and distribution of phytoplankton groups as well as the chlorophyll-a concentration in the Bay of La Paz, Gulf of California, Mexico. Based on in situ observations obtained in a multidisciplinary research cruise during the summer of 2008, a mesoscale dipole (cyclone-anticyclone) was observed; the cyclone had ~25 km diameter and tangential speed of ~45 cm s-1, while the anticyclone had ~15 km diameter and tangential speed of ~40 cm s-1. Strong gradients in conservative temperature and density were observed between both structures, suggesting the presence of an oceanic thermohaline front. Differences in phytoplankton distribution showed minimum abundance of diatoms in the southern bay and close to Roca Partida Island, and maximum in the periphery in the northern cold core. The maximum abundance of dinoflagellates and silicoflagellates occurred at the frontal zone. The chlorophyll-a concentration was high in the region associated with the frontal zone. Although mesoscale eddies are ubiquitous processes in the Bay of La Paz, this study represents the first observational report of the impacts of a dipole on the phytoplankton structure and chlorophyll-a in the region. The observations presented here indicate the existence of a strong association between the mesoscale processes and the phytoplankton community in the study area. This study highlights the value of efforts to improve projections of physical forcing and its influence on the planktonic ecosystem.
Czasopismo
Rocznik
Strony
331--340
Opis fizyczny
Bibliogr. 39 poz., mapa, rys.
Twórcy
  • DGAPA Postdoctoral Fellowship, Institute of Marine Sciences and Limnology (ICML), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Ecology and Aquatic Biodiversity Academic Unit, Institute of Marine Sciences and Limnology (ICML), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Ecology and Aquatic Biodiversity Academic Unit, Institute of Marine Sciences and Limnology (ICML), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
  • Cátedras CONACYT, Institute of Marine Sciences and Limnology (ICML), National Autonomous University of Mexico (UNAM), Mexico City, Mexico
Bibliografia
  • [1] Aldeco-Ramírez, J., Monreal-Gómez, M. A., Signoret-Poillon, M., Salas de León, D. A., Hernández-Becerril, D. U., 2009. Occurrence of a subsurface anticyclonic eddy, fronts and Trichodesmium spp. over the Campeche Canyon region, Gulf of Mexico. Cienc. Mar. 35 (4), 333-344.
  • [2] Batten, S. D., Crawford, W. R., 2005. The influence of coastal origin eddies on oceanic plankton distributions in the eastern Gulf of Alaska. Deep-Sea Res. Pt. II 52 (7-8), 991-1010, http://dx.doi.org/10.1016/j.dsr2.2005.02.009.
  • [3] Coria-Monter, E., Monreal-Gómez, M. A., Salas de León, D. A., Aldeco-Ramírez, J., Merino-Ibarra, M., 2014. Differential distribution of diatoms and dinoflagellates in a cyclonic eddy confined in the Bay of La Paz, Gulf of California. J. Geophys. Res. 119, 6258-6268, http://dx.doi.org/10.1002/2014JC009916.
  • [4] Coria-Monter, E., Monreal-Gómez, M. A., Salas de León, D. A., Merino-Ibarra, M., Durán-Campos, E., 2017. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California. Estuar. Coast. Shelf Sci. 196, 290-300, http://dx.doi.org/10.1016/j.ecss.2017.07.010.
  • [5] Durán-Campos, E., Salas de León, D. A., Monreal-Gómez, M. A., Aldeco-Ramírez, J., Coria-Monter, E., 2015. Differential zoo-plankton aggregation due to relative vorticity in a semi-enclosed bay. Estuar. Coast. Shelf Sci. 164, 10-18, http://dx.doi.org/10.1016/j.ecss.2015.06.030.
  • [6] Edler, L., Elbrächter, M., 2010. The Utermohl method for quantitative phytoplankton analysis. In: Karlson, B., Cusack, C., Bresnan, E. (Eds.), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis. UNESCO, Paris, 13-21.
  • [7] Erga, S. R., Ssebiyonga, N., Hamre, B., Frette, O., Hovland, E., Hancke, K., Drinkwater, K., Rey, F., 2014. Environmental control of phytoplankton distribution and photosynthetic performance at the Jan Mayen Front in Norwegian Sea. J. Mar. Syst. 130, 193-205, http://dx.doi.org/10.1016/j.jmarsys.2012.01.006.
  • [8] Estrada, M., Varela, M., Salat, J., Cruzado, A., Arias, E., 1999. Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean). J. Plankton Res. 21 (1), 1-20, http://dx.doi.org/10.1093/plankt/21.1.1.
  • [9] Franks, P. J. S., 1992. Sink or swim: accumulations of biomass at fronts. Mar. Ecol. Prog. Ser. 82, 1-12.
  • [10] Gaube, P., Chelton, D. B., Strutton, P. G., Behrenfeld, M. J., 2013. Satellite observations of chlorophyll, phytoplankton, biomass and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 118, 6349-6370, http://dx.doi.org/10.1002/2013JC009027.
  • [11] Guidi, L., Calil, P. H. R., Duhamel, S., Björkman, K. M., Doney, S. C., Jackson, G. A., Li, B., Church, M. J., Tozzi, S., Kolber, Z. S., Richards, K. J., Fong, A. A., Letelier, R. M., Gorsky, G., Stemmann, L., Karl, D. M., 2012. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? J. Geophys. Res. 117 (G2), 12 pp., http://dx.doi.org/10.1029/2012JG001984G02024.
  • [12] Hernández-Carrasco, I., Orfila, A., Rossi, V., Garcon, V., 2018. Effect of small scale transport processes on phytoplankton distribution in coastal seas. Sci. Rep. 8, 8613, http://dx.doi.org/10.1038/s41598-018-26857-9.
  • [13] Hu, C., Lee, Z., Franz, B., 2012. Chlorophyll-a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J. Geophys. Res. 117, http://dx.doi.org/10.1029/2011JC007395 C01011, 25.
  • [14] IOC, SCOR, IAPSO, 2010. The international thermodynamic equation of seawater-2010. Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manual and guides, No. 56. UNESCO, Paris, p. 196.
  • [15] Kolasinski, J., Kaehler, S., Jaquemet, S., 2012. Distribution and sources of particulate organic matter in a mesoscale eddy dipole in the Mozambique Channel (south-western Indian Ocean): insight from C and N stable isotopes. J. Mar. Syst. 96-97, 122-131, http://dx.doi.org/10.1016/j.jmarsys.2012.02.015.
  • [16] Lavín, M. F., Castro, R., Beier, E., Godínez, V. M., 2013. Mesoscale eddies in the southern Gulf of California during summer: characteristics and interaction with the wind stress. J. Geophys. Res. 118, 1367-1381, http://dx.doi.org/10.1002/jgrc.20132.
  • [17] Lehahn, Y., d'Ovidio, F., Lévy, M., Heifetz, E., 2007. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J. Geophys. Res. 112 (C8), C08005, 15 pp., http://dx.doi.org/10.1029/2006JC003927.
  • [18] Liu, F., Tang, S., Chen, C., 2013. Impact of nonlinear mesoscale eddy on phytoplankton distribution in the northern South China Sea. J. Mar. Syst. 123-124, 33-40, http://dx.doi.org/10.1016/j.jmarsys.2013. 04.005.
  • [19] Mahadevan, A., 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8, 161-184, http://dx.doi.org/10.1146/annurev-marine-010814-015912.
  • [20] Maúre, E. R., Ishizaka, J., Sukigara, C., Mino, Y., Aiki, H., Matsuno, T., Tomita, H., Goes, J. I., Gomes, H. R., 2017. Mesoscale eddies control the timing of spring phytoplankton blooms: a case study in the Japan Sea. Geophys. Res. Lett. 44 (21), 11115-11124, http://dx.doi.org/10.1002/2017GL074359.
  • [21] McGillicuddy Jr., D. J., 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 8, 125-159, http://dx.doi.org/10.1146/annurev-marine-010814-015606.
  • [22] McGillicuddy Jr., D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C., Davis, C. S., Ewart, C., Falkowski, P., Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V., Ledwell, J. R., Li, Q. P., Siegel, D. A., Steinberg, D. K., 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316 (5827), 1021-1026, http://dx.doi.org/10.1126/science.1136256.
  • [23] McGillicuddy Jr., D. J., Robinson, A. R., 1997. Eddy induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. 44 (8), 1427-1450, http://dx.doi.org/10.1016/S0967-0637(97)00024-1.
  • [24] Molina-Cruz, A., Pérez-Cruz, L., Monreal-Gómez, M. A., 2002. Laminated sediments in the Bay of La Paz, Gulf of California: a depositional cycle regulated by pluvial flux. Sedimentology 49, 1401-1410, http://dx.doi.org/10.1046/j.1365-3091.2002.00505.x.
  • [25] Monreal-Gómez, M. A., Molina-Cruz, A., Salas de León, D. A., 2001. Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. J. Mar. Syst. 30, 305-315, http://dx.doi.org/10.1016/S0924-7963(01)00064-1.
  • [26] Pardo, M. A., Silverberg, N., Gendron, D., Beier, E., Palacios, D. M., 2013. Role of environmental seasonality in the turnover of cetacean community in the southwestern Gulf of California. Mar. Ecol. Prog. Ser. 487, 245-260, http://dx.doi.org/10.3354/meps10217.
  • [27] Persson, A., Smith, B. C., Wikfors, G. H., Alix, J. H., 2013. Differences in swimming pattern between life cycle stages of the toxic dinoflagellate Alexandrium fundyense. Harmful Algae 21-22, 36-43, http://dx.doi.org/10.1016/j.hal.2012.11.005.
  • [28] Peterson, T. D., Crawford, D. W., Harrison, P. J., 2011. Mixing and biological production at eddy margins in the eastern Gulf of Alaska. Deep-Sea Res. 58 (Pt I), 377-389, http://dx.doi.org/10.1016/j.dsr.2011.01.010.
  • [29] Pond, S., Pickard, G. L., 1983. Introductory Dynamical Oceanography, 2nd ed. Pergamon Press, Oxford, 329 pp.
  • [30] Salas de León, D. A., Carbajal, N., Monreal-Gómez, M. A., Gil-Zurita, A., 2011. Vorticity and mixing induced by the barotropic M2 tidal current and zooplankton biomass distribution in the Gulf of California. J. Sea Res. 66, 143-153, http://dx.doi.org/10.1016/j.seares.2011.05.011.
  • [31] Salas de León, D. A., Monreal-Gómez, M. A., Signoret, M., Aldeco-Ramírez, J., 2004. Anticyclonic-cyclonic eddies and their impact on near-surface chlorophyll stocks and oxygen supersaturation over the Campeche Canyon, Gulf of Mexico. J. Geophys. Res. 109 (C5), C05012, 10 pp., http://dx.doi.org/10.1029/2002JC001614.
  • [32] Sarma, V. V. S. S., Desai, D. V., Patil, J. S., Khandeparker, L., Aparna, S. G., Shankar, D., D'Souza, S., Dalabehera, H. B., Mukherjee, J., Sudharani, P., Anil, A. C., 2018. Ecosystem response in temperature fronts in the northeastern Arabian Sea. Prog. Oceanogr. 165, 317-331, http://dx.doi.org/10.1016/j.pocean.2018.02.004.
  • [33] Simpson, J. J., Lynn, R. J., 1990. A mesoscale eddy dipole in the offshore California current. J. Geophys. Res. 95 (C8), 13009-13022, http://dx.doi.org/10.1029/JC095iC08p13009.
  • [34] Smayda, T., 2002. Turbulence, water mass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae 1, 95-112, http://dx.doi.org/10.1016/S1568-9883(02)00010-0.
  • [35] Sournia, A., 1994. Pelagic biogeography and fronts. Prog. Oceanogr. 34, 109-120, http://dx.doi.org/10.1016/0079-6611(94)90004-3.
  • [36] Thompson, P. A., Pesant, S., Waite, A. M., 2007. Contrasting the vertical differences in the phytoplankton biology of a dipole pair of eddies in the south-eastern Indian Ocean. Deep-Sea Res. Pt. II 54, 1003-1028, http://dx.doi.org/10.1016/j.dsr2.2006.12.009.
  • [37] Tomas, C. R., 1997. Identifying Marine Phytoplankton. New York Acad. Press, New York, 858 pp.
  • [38] Vajravelu, M., Martin, Y., Ayyappan, S., Mayakrishnan, M., 2017. Seasonal influence of physic-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, south east coast of India. Oceanologia 60 (2), 114-127, http://dx.doi.org/10.1016/j.oceano.2017.08.003.
  • [39] Wang, L., Huang, B., Chiang, K. P., Liu, X., Chen, B., Xie, Y., Xu, Y., Dai, M., 2016. Physical-biological coupling in the western South China Sea: the response of phytoplankton community to a mesoscale cyclonic eddy. PLOS ONE 11 (4), e0153735, http://dx.doi. org/10.1371/journal.pone.0153735.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7484e8c0-a4b7-4530-95b5-2587a4d22374
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.