Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of measurements of concentrations of selected exhaust components of the Fiat 0.9 TwinAir spark ignition engine operating according to load characteristics. The tested engine has an indirect, multi-point petrol supply system and has been retrofitted with an indirect CNG injection system. The results of the tests are a comparison of selected economic, ecological and energetic indicators of engine operation obtained when fuelled with CNG and 95 octane petrol. The operation of the engine fuelled with gaseous fuel was preceded by autocalibration of the controller of the fuelling system. The article presents the results of tests of concentrations of harmful components of exhaust gases: carbon dioxide CO2 , carbon monoxide CO, nitrogen oxides NOx and HC hydrocarbons. Moreover, the values of lambda λ air excess coefficient are presented and fuel consumption is compared. The obtained results of the tests of the engine fuelled with CNG gas show a significant decrease in the value of the obtained torque in comparison to the engine torque when fuelled with petrol. The engine fuelled with compressed natural gas contributed to the improvement of its ecological properties and a reduction of fuel consumption, which are important factors of ecological and energy safety. Exhaust gas analysis showed a reduction in the concentration of harmful components of exhaust gases, mainly hydrocarbons and nitrogen oxides. A positive effect of the operation of the engine powered by CNG was also a significant reduction of carbon dioxide in the exhaust gases compared to the engine powered with gasoline.
Czasopismo
Rocznik
Tom
Strony
47--60
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
- Kielce University of Technology, Department of Automotive Vehicles and Transport, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
- Rzeszow University of Technology, Department of Automotive Vehicles and Transport Engineering, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
- [1] Ajanovic A., Haas R.: On the economics and the future prospects of battery electric vehicles. Greenhouse Gases-Science and Technology. 2020, DOI: 10.1002/ghg.1985.
- [2] Ambrozik A., Ambrozik T., Kurczyński D., Łagowski P., Trzensik E.: Cylinder Pressure Patterns in the SI Engine Fuelled by Methane and by Methane and Hydrogen Blends. Solid State Phenomena. 2013, 210, 40–49, DOI:10.4028/www.scientific.net/SSP.210.40.
- [3] Anderhofstadt B., Spinler S.: Factors affecting the purchasing decision and operation of alternative fuelpowered heavy-duty trucks in Germany - A Delphi study. Transportation Research Part D - Transport and Environment. 2019, 73, 87–107, DOI: 10.1016/j.trd.2019.06.003.
- [4] Behrad R., Aghdam EA., Ghaebi H.: Experimental study of knocking phenomenon in different gasoline-natural gas combinations with gasoline as the predominant fuel in a SI engine. Journal of Thermal Analysis and Calorimetry. 2020, 139, 2489–2497, DOI: 10.1007/s10973-019-08579-w.
- [5] Bielaczyc P., Woodburn J.: Powertrain Development for Low-to-Zero Emissions and Efficient Energy Usage - the Industry Session held during the 5th PTNSS Congress on Combustion Engines. Combustion Engines. 2013, 4 (155), 75–79.
- [6] Bieńczak M.,Gawron P., Kiciński M., Kwaśnikowski J.: Zrównoważone planowanie publicznego transportu zbiorowego w ramach jednostek terytorialnych - spójna metodyka oparta na metodach optymalizacji (Sustainable public transport planning within territorial units - a coherent methodology based on optimisation methods). Logistyka. 2015, 4, 90–98.
- [7] Cantore G., Mattarelli E., Rinaldini CA., Savioli T., Scrignoli F.: Numerical Optimization of the Injection Strategy on a Light Duty Diesel Engine Operating in Dual Fuel (CNG/Diesel) Mode. International Journal of Heat and Technology. 2019, 37(3), 682–688, DOI: 10.18280/ijht.370303.
- [8] Czakon W., Niemand T., Gast J., Kraus S., Fruhstuck L.: Designing coopetition for radical innovation: An experimental study of managers' preferences for developing self-driving electric cars. Technological Forecasting and Social Change. 2020, 155, DOI: 10.1016/j.techfore.2020.119992.
- [9] Demusiak G., Dzirba J., Warowny W: Rola gazu ziemnego w technologiach ogniw paliwowych (The role of natural gas in fuel cell technology). Przemysł Chemiczny. 2005, 11, 22–28.
- [10] Dobras S., Więcław-Solny L., Wilk A., Tatarczuk A.: Metan z procesów Power to Gas - ekologiczne paliwo do zasilania silników spalinowych (Methane from the Power to Gas process - an environmentally friendly fuel for internal combustion engines). Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. 2018, 104, 97–106, DOI: 10.24425/124359.
- [11] Hao X., Zhou Y., Wang HW., Ouyang MG.: Plug-in electric vehicles in China and the USA: a technology and market comparison. Mitigation and Adaptation Strategies for Global Change. 2020, DOI: 10.1007/s11027-019-09907-z.
- [12] Khan MI., Yasmin T., Shakoor A.: Technical overview of compressed natural gas (CNG) as a transportation fuel. Renewable & Sustainable Energy Reviews. 2015, 51, 785–797, DOI: 10.1016/j.rser.2015.06.053.
- [13] Kurczyński D., Łagowski P., Warianek M.: The impact of natural gas on the ecological safety of using Diesel engine. IEEE. 2018, 1–8, DOI: 10.1109/AUTOSAFE.2018.8373341.
- [14] Lebelhuber C., Steinmuller H.: How and to which extent can the gas sector contribute to a climate-neutral European energy system? A qualitative approach. Energy Sustainability and Society. 2019, 9(23), DOI:10.1186/s13705-019-0207-2.
- [15] Lee J., Park C., Bae J., Kim Y., Lee S., Kim C.: Comparison between gasoline direct injection and compressed natural gas port fuel injection under maximum load condition. Energy. 2020, 197, 117173, DOI: 10.1016/j.energy.2020.117173.
- [16] Luft S., Skrzek T.: Analysis of the effect of diesel oil injection timing on combustion parameters that affect durability of a dual-fuel combustion engine operating on natural gas. Material Science and Engineering. 2018, 421, 1–10, DOI: 10.1088/1757-899X/421/4/042051.
- [17] Marinaro M., Bresser D., Beyer E., Faguy P., Hosoi K., Li H. et al.: Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources. 2020, 459, 228073, DOI: 10.1016/j.jpowsour.2020.228073.
- [18] Merkisz J., Pielecha J., Łabędź K., Stojecki A.: Badania emisji spalin pojazdów o różnej klasie emisyjnej zasilanych gazem ziemnym (Emission tests for vehicles of different emission classes fuelled by natural gas). Prace Naukowe Politechniki Warszawskiej. Transport. 2013, 98, 463–472.
- [19] Mohamed AAS., Shaier AA., Metwally H., Selem SI.: A comprehensive overview of inductive pad in electric vehicles stationary charging. Applied Energy. 2020, 262, 114584, DOI: 10.1016/j.apenergy.2020.114584.
- [20] Napolitano P., Alfe M., Guido C., Gargiulo V., Fraioli V., Beatrice C.: Particle emissions from a HD SI gas engine fueled with LPG and CNG. Fuel. 2020, 269, DOI: 10.1016/j.fuel.2020.117439.
- [21] Olczyk M., Korzec J., Bielaczyc P., Sordyl A.: CNG and diesel fuel supply system in the CI engine as an alternative for traditional fuel systems. Combustion Engines. 2015, 162(3), 858–867.
- [22] Pielecha J., Merkisz J., R. Stojecki A.: Ecological Analysis of Passenger Cars with Gasoline and Diesel Engines During the Road Emission. Logistyka. 2015, 4, 823–835.
- [23] Racewicz, S, Olejnik A.: Control of Fiat MultiAir valve-lift system using ATMEGA microcontroller. Journal of KONES, Powertrain and Transport. 2017, 24 (3), 229–236, DOI: 10.5604/01.3001.0010.3083.
- [24] Ran ZN., Hariharan D., Lawler B., Mamalis S.: Exploring the potential of ethanol, CNG, and syngas as fuels for lean spark-ignition combustion - An experimental study. Energy. 2020, 191, 116520, DOI: 10.1016/j.energy.2019.116520.
- [25] Romaniszyn KM.: Alternatywne zasilanie samochodów benzyną oraz gazami LPG i CNG (Alternative car fuelling with petrol and LPG and CNG). Wydawnictwa Naukowo Techniczne. 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-747cc9cf-c83a-4195-aa2e-e1912fd6f50d