PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected issues regarding achievements in component importance analysis for complex technical systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selected issues of component importance analysis for complex technical systems have been presented in this paper. A generic example of a complex technical system and selected statistics of operating losses have been described. A description and diagrams of both qualitative and quantitative importance analysis have also been included. The most significant problems facing complex technical system modelling have been pointed out. A multi-criteria system component importance analysis and the basic criteria for a system component quality evaluation have also been introduced. Some factors influencing the importance of the technical system’s components have also been described. Finally, the necessity of further developing importance analysis methods for machinery operation has been highlighted.
Rocznik
Strony
137--144
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Maritime University of Szczecin, Faculty of Marine Engineering 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
  • Maritime University of Szczecin, Faculty of Marine Engineering 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Andrews, J.D. (2008) Birnbaum and criticality measures of component contribution to the failure of phased missions. Reliability Engineering and System Safety 93, pp. 1861– 1966.
  • 2. Bajkowski, J.M. & Zalewski, R. (2014) Transient response analysis of a steel beam with vacuum packed particles. Mechanics Research Communications 60, pp. 1–6.
  • 3. Belton, V. & Gear, T. (1983) On a short-coming of Saaty’s method of analytic hierarchies. Omega 11, pp. 228–230.
  • 4. Belton, V. (1986) A comparison of the analytic hierarchy process and a simple multi-attribute value function. European Journal of Operational Research 26, pp. 7–21.
  • 5. Belton, V. & Goodwin, P. (1996) Remarks on the application of the analytic hierarchy process to judgmental forecasting. International Journal of Forecasting 12, pp. 155–161.
  • 6. Borgonovo, E. & Apostolakis, G.E. (2001) A New importance measure for risk-informed decision making. Reliability Engineering and System Safety 72, pp. 193–212.
  • 7. Borgonovo, E., Apostolakis, G.E., Tarantola, S. & Saltelli, A. (2003) Comparison of global sensitivity analysis techniques and importance measures in PSA. Reliability Engineering and System Safety 79, pp. 175–185.
  • 8. Chang, T.-C. & Wang, H. (2016) A self-testing cloud model for multi-criteria group decision making. Engineering Computations 33, 6, pp. 1767–1783.
  • 9. Cebeci, U. & Ruan, D. (2007) A multi-attribute comparison of Turkish quality consultants by fuzzy AHP. Int. J. Info. Tech. Dec. Mak. 06, 01, pp. 191–207.
  • 10. Chybowski, L. (2004) Szacowanie niegotowości wybranych systemów siłowni okrętowej obiektów pływających specjalnego przeznaczenia. Materiały XXV Sympozjum Siłowni Okrętowych SymSO 2004. WOiO Politechnika Gdańska, Gdańsk, pp. 5–18.
  • 11. Chybowski, L. (2009) Application of External Events Vectors for Defining Reliability Structure of Fishing Vessels power, Propulsion and Technological Plant. PJoES 18, 2A, pp. 45–50.
  • 12. Chybowski, L. (2012) Example of Comprehensive Qualitative-Quantitative Reliability Importance Analysis of Complex Technical Systems on a Marine Propulsion Plant. IARS 2012, Symposium Proceedings, Reliasoft Corporation, Warszawa, book session 7/track 2 + CD ROM.
  • 13. Chybowski, L. (2014) Ważność elementów w strukturze złożonych systemów technicznych. Radom – Szczecin: ITEPIB.
  • 14. Chybowski, L. & Gawdzińska, K. (2016a) On the Present State-of-the-Art of a Component Importance Analysis for Complex Technical Systems. Advances in Intelligent Systems and Computing 445, pp. 691–700.
  • 15. Chybowski, L. & Gawdzińska, K. (2016b) On the Possibilities of Applying the AHP Method to a Multi-criteria Component Importance Analysis of Complex Technical Objects. Advances in Intelligent Systems and Computing 445, pp. 701–710.
  • 16. Dehghanian, P. et al. (2012) Critical Component Identification in Reliability Centered Asset Management of Power Distribution Systems Via Fuzzy AHP. IEEE Systems Journal 4, pp. 593–602.
  • 17. Derlukiewicz, D., Ptak, M. & Koziołek, S. (2016) Proactive failure prevention by human-machine interface in remote-controlled demolition robots. New Contributions in Information Systems and Technologies: Advances in Intelligent Systems and Computing 445, pp. 711–720.
  • 18. Downowicz, O., Krause, J., Sikorski, M. & Stachowski, W. (2000) Application of AHP Method for Evaluation and Safety Control of a Complex Technical System. In: Downorowicz O. (Ed.) Wybrane metody ergonomii i nauki o ekspoloatacji. Gdańsk: Politechnika Gdańska, pp. 7–42 (in Polish).
  • 19. Dyer, J.S. (1990) Remarks on the analytic hierarchy process. Management Science 36, pp. 249-258.
  • 20. Espiritu, J.F., Coit, D.W. & Prakash, U. (2007) Component criticality importance measures for the power industry. Electric Power Systems Research 77, pp. 407–420.
  • 21. Gawdzińska, K., Chybowski, L. & Przetakiewicz, W. (2015) Proper matrix-reinforcement bonding in cast metal matrix composites as a factor of their good quality. Archives of Civil and Mechanical Engineering 16(3), pp. 553–563.
  • 22. Gawdzińska, K., Chybowski, L., Bejger, A. & Krile, S. (2016) Determination of technological parameters of saturated composites based on sic by means of a model liquid. Metalurgija 55, 4, pp. 659–662.
  • 23. Goerlandt, F. & Montewka, J. (2014) Review of risk concepts and perspectives in risk assessment of maritime transportation. Proceedings of The European Safety And Reliability Conference (ESREL), Wrocław, pp. 1547- –1554.
  • 24. Gomes, H.M. & Awruch, A.M. (2002) Reliability of reinforced concrete structures using stochastic finite elements. Engineering Computations 19, 7, pp. 764–786.
  • 25. Grzebieniak, R. & Chybowski, L. (2005) Testy diagnostyczne, grafy wiązań i równania stanu jako narzędzia oceny stanu technicznego urządzeń. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 5 (77), pp. 247–255.
  • 26. Grzebieniak, R. & Chybowski, L. (2006a) Wykorzystanie testów diagnostycznych zbudowanych metodą macierzy booleowskich do oceny stanu technicznego systemu smarowania silnika głównego. Zeszyty Niezawodność i Efektywność Systemów Technicznych. KGTU, Kaliningrad, pp. 79–85.
  • 27. Grzebieniak, R. & Chybowski, L. (2006b) Opis wybranego systemu siłowni okrętowej grafami wiązań. Zeszyty Niezawodność i Efektywność Systemów Technicznych. KGTU, Kaliningrad, pp. 86-90.
  • 28. Karanta, I. (2011) Importance measures for the dynamic flowgraph methodology. CHARISMA Project. Research report VTT-R-00525-11, Helsinki.
  • 29. Kolman, R. (1994) Sterowanie jakością wytwarzania. Gdańsk: Politechnika Gdańska.
  • 30. Krile, S. & Kos, M. (2001) A heuristic approach to satellite link capacity planning applied in mobile networks. ITI 2001: Proceedings of the 23rd International Conference on Information Technology Interfaces, Pula, pp. 331–338.
  • 31. Kuo, W. & Zhu, X. (2012) Importance measures in reliability, risk, and optimization. Principles and application. John Wiley & Sons, Ltd.
  • 32. Ogryczak, W. (2004) Decision making under risk. Monograph course, textbook, Warsaw University.
  • 33. Peng, Y. et al (2011) Ensemble of software defect predictors: an AHP-based evaluation method. Int. J. Info. Tech. Dec. Mak. 10, 01, pp. 187–206.
  • 34. Pietruszkiewicz, W., Twardochleb, M. & Roszkowski, M. (2011) Hybrid approach to the computational support of decision making in business. Control and Cybernetics 40, 1.
  • 35. Ptak, M. & Konarzewski, K. (2015) Numerical Technologies for Vulnerable Road User Safety Enhancement. New Contributions in Information Systems and Technologies: Advances in Intelligent Systems and Computing 354, pp. 355–364.
  • 36. Rausand, M. & Høyland, A. (2004) System Reliability Theory: Models, Statistical Methods, and Applications. John Wiley & Sons.
  • 37. Rozenberg, L. & Twardochleb, M. (2010) Hybrid optimization approach for effective quasi-optimization solutions. Methods of Optimisation and Data Analysis. University of Szczecin, Faculty of Economics and Management, Szczecin, pp. 31–43.
  • 38. Saaty, T.L. (1990) How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research 48, pp. 9–26.
  • 39. Saaty, T.L. (1994) Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. Pittsburgh: RWS Publications.
  • 40. Sun, Y. et al. (2008) Safety risk identification and assessment for Beijing Olympic venues construction. Journal of Management in Engineering 24(1), pp. 40–47.
  • 41. RELIASOFT (2007) System Analysis Reference. System Reliability, Maitainability, Availability, Throughput and Optimization Analysis. Tucson.
  • 42. Wiśnicki, B. & Dyrda, A. (2016) Analysis of the Intermodal Transport Efficiency in the Central and Eastern Europe. OUR SEA: International Journal of Maritime Science & Technology 63, pp. 43–47.
  • 43. Woropay, M. (1983) Metoda budowy wielopoziomowych systemów do badania niezawodności z elementów o wyznaczonej a piori istotności. Rozprawy nr 18. Bydgoszcz: ATR.
  • 44. Zalewski, R. & Szmidt, T. (2014) Application of Special Granular Structures for semi-active damping of lateral beam vibrations. Engineering Structures 65, pp. 13–20.
  • 45. Zanoli, S.M., Astolfi, G.J. & Marczyk, J. (2012) Complexity-based methodology for Fault Diagnosis: application on a centrifugal machine. Analysis and Control of Chaotic Systems 3, Part 1. Cancún.
  • 46. Ziemba, S., Jarominek, W. & Staniszewski, R. (1980) Problemy teorii systemów. Wrocław: Ossolineum.
  • 47. Żółkiewski, S. (2010) Dynamic Flexibility of Complex Damped Systems Vibrating Transversally in Transportation. Solid State Phenomena 164, pp. 339–342.
  • 48. Żółkiewski, S. (2011) Damped Vibrations Problem of Beams Fixed on the Rotational Disk. International Journal of Bifurcation and Chaos 21, 10, pp. 3033–3041.
  • 49. Żurek, J., Zieja, M. & Smalko, Z. (2010) The Reliability Estimation of Structural Components with Some Selected Failure Model. PSAM11 & ESREL, Helsinki.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-747917c7-0152-4f98-8883-c939ab5fccb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.