PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing graphene based polymer matrix composites (GPMCs) via 3D printing (additive manufacturing) : a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exponential increase in the potential applications of graphene has forced its inclusion in composites. Presently, composites containing graphene have been manufactured by many conventional processes. Since 3D printing (additive manufacturing) offers a wide range of advantages for manufacturing, researchers from the composite industry are now adopting novel techniques to manufacture graphene based composites via additive manufacturing. When selecting materials for composites, polymers stand out as the top choice for manufacturers because polymers require a low temperature to mold their shape and they are easy to handle when compared to ceramics and metals. Hence, substantial focus of the composite industry is now shifting towards manufacturing graphene based polymer matrix composites. In this regard, this paper provides a brief review of the 3D printing (additive manufacturing) processes which to date have been adopted to manufacture ‘graphene based polymer matrix composites’. The promising physical properties of graphene based polymer matrix composites and the future prospects of functionalizing graphene in polymer based composites is also highlighted.
Rocznik
Strony
126--132
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Design and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
Bibliografia
  • [1] Research and Markets, July 2019, https://www.researchandmarketscom/reports/4808204/global-and-china-graphene-industry-report-2019.
  • [2] Li Y., Feng Z., Huang L., Essa K., Bilotti E., Zhang H., ... & Hao L., Additive manufacturing high performance graphene-based composites: A review, Composites Part A: Applied Science and Manufacturing 2019, 105483.
  • [3] ASTM I., ASTM 52900-15 Standard Terminology for Additive Manufacturing-General Principles-Terminology, ASTM International, West Conshohocken, PA 2015.
  • [4] Goh G.D., Yap Y.L., Agarwala S., Yeong W.Y., Recentprogress in additive manufacturing of fiber reinforced polymer composite. Advanced Materials Technologies 2019, 4(1), 1800271.
  • [5] Turner B.N., Gold S.A., A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness, Rapid Prototyping Journal 2015, 21(3), 250-261.
  • [6] Compton B.G., Lewis J.A., 3D‐printing of lightweight cellular composites. Advanced materials 2014, 26(34), 5930-5935.
  • [7] Nakamoto T., Kojima S., Layered thin film micro parts reinforced with aligned short fibers in laser stereolithography by applying magnetic field, Journal of Advanced Mechanical Design, Systems, and Manufacturing 2012, 6(6), 849-858.
  • [8] Nakamoto T., Matsuzaki K., Development of unidirectional fiber reinforced product, IJAT 2008, 2(6), 457-461.
  • [9] Cheah C.M., Fuh J.Y.H., Nee A.Y.C., Lu L., Mechanical characteristics of fiber-filled photo-polymer used in stereolithography, Rapid Prototyping Journal 1999, 5(3), 112-119.
  • [10] Lu Z.L., Lu F., Cao J.W., Li D.C., Manufacturing properties of turbine blades of carbon fiber-reinforced SiC composite based on stereolithography. Materials and Manufacturing Processes 2014, 29(2), 201-209.
  • [11] Mani M., Lyons K.W., Gupta S.K., Sustainability characterization for additive manufacturing, Journal of Research of the National Institute of Standards and Technology 2014, 119, 419.
  • [12] Klosterman D., Chartoff R., Graves G., Osborne N., Priore B., Interfacial characteristics of composites fabricated by laminated object manufacturing, Composites Part A: Applied Science and Manufacturing 1998, 29(9-10), 1165-1174.
  • [13] Bustillos J., Montero D., Nautiyal P., Loganathan A., Boesl B., Agarwal A., Integration of graphene in poly(lactic)acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites, Polymer Composites 2018, 39(11), 3877-3888.
  • [14] Wei X., Li D., Jiang W., Gu Z., Wang X., Zhang Z., Sun Z., 3D printable graphene composite, Scientific Reports 2015, 5, 11181.
  • [15] Angjellari M., Tamburri E., Montaina L., Natali M., Passeri D., Rossi M., Terranova M. L., Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing, Materials & Design 2017, 119, 12-21.
  • [16] Compton B.G., Hmeidat N.S., Pack R.C., Heres M.F., Sangoro J.R., Electrical and mechanical properties of 3D-printed graphene-reinforced epoxy, JOM 2018, 70(3), 292-297.
  • [17] Wang X., Jiang M., Zhou Z., Gou J., Hui D., 3D printing of polymer matrix composites: A review and prospective, Composites Part B: Engineering 2017, 110, 442-458.
  • [18] Li Y., Zhang H., Liu Y., Wang H., Huang Z., Peijs T., Bilotti E., Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates, Composites Part A: Applied Science and Manufacturing 2018, 105, 9-18.
  • [19] Li Y., Zhang H., Porwal H., Huang Z., Bilotti E., Peijs T., Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing 2017, 95, 229-236.
  • [20] Li Y., Zhang H., Crespo M., Porwal H., Picot O., Santagiuliana G., ... & Bilotti E., In situ exfoliation of graphene in epoxy resins: a facile strategy to efficient and large scale graphene nanocomposites, ACS Applied Materials & Interfaces 2016, 8(36), 24112-24122.
  • [21] Prolongo S.G., Jimenez-Suarez A., Moriche R., Ureña A., In situ processing of epoxy composites reinforced with graphene nanoplatelets, Composites Science and Technology 2013, 86, 185-191.
  • [22] Qi B., Lu S.R., Xiao X.E., Pan L.L., Tan F.Z., Yu J.H., Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide, Express Polymer Letters 2014, 8(7).
  • [23] Liu Y., Wu H., Chen G., Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling, Polymer Composites 2016, 37(4), 1190-1197.
  • [24] Santagiuliana G., Picot O.T., Crespo M., Porwal H., Zhang H., Li Y., ... Spoelstra A.B., Breaking the nanoparticle loading-dispersion dichotomy in polymer nanocomposites with the art of croissant-making, ACS Nano 2018, 12(9), 9040-9050.
  • [25] Gnanasekaran K., Heijmans T., Van Bennekom S., Woldhuis H., Wijnia S., de With G., Friedrich H., 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling, Applied Materials Today 2017, 9, 21-28.
  • [26] Shuai C., Feng P., Gao C., Shuai X., Xiao T., Peng S., Graphene oxide reinforced poly(vinyl alcohol): nanocomposite scaffolds for tissue engineering applications, RSC Advances 2015, 5(32), 25416-25423.
  • [27] Mohan V.B., Krebs B.J., Bhattacharyya D., Development of novel highly conductive 3D printable hybrid polymer-graphene composites, Materials Today Communications 2018, 17, 554-561.
  • [28] Jakus A.E., Secor E.B., Rutz A.L., Jordan S.W., Hersam M.C., Shah R.N., Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications, ACS Nano 2015, 9(4), 4636-4648.
  • [29] Dul S., Fambri L., Pegoretti A., Fused deposition modelling with ABS-graphene nanocomposites, Composites Part A: Applied Science and Manufacturing 2016, 85, 181-191.
  • [30] Singh R., Sandhu G., Penna R., Farina I., Investigations for thermal and electrical conductivity of ABS-graphene blended prototypes, Materials 2017, 10(8), 881.
  • [31] Huang K., Yang J., Dong S., Feng Q., Zhang X., Ding Y., Hu J., Anisotropy of graphene scaffolds assembled by three-dimensional printing, Carbon 2018, 130, 1-10.
  • [32] de Leon A.C., Rodier B.J., Bajamundi C., Espera Jr, A., Wei P., Kwon J.G., ... & Pentzer E., Plastic metal-free electric motor by 3D printing of graphene-polyamide powder, ACS Applied Energy Materials 2018, 1(4), 1726-1733.
  • [33] Vernardou D., Vasilopoulos K.C., Kenanakis G., 3D printed graphene-based electrodes with high electrochemical performance, Applied Physics A, 2017, 123(10), 623.
  • [34] Foster C.W., Down M.P., Zhang Y., Ji X., Rowley-Neale S.J., Smith G.C., ... & Banks C.E., 3D printed graphene based energy storage devices, Scientific Reports 2017, 7, 42233.
  • [35] Chen Q., Mangadlao J.D., Wallat J., De Leon A., Pokorski J.K., Advincula R.C., 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties, ACS Applied Materials & Interfaces 2017, 9(4), 4015-4023.
  • [36] Sayyar S., Cornock R., Murray E., Beirne S., Officer D.L., Wallace G.G., Extrusion printed graphene/polycaprolactone/composites for tissue engineering, In: Materials Science Forum 2014, 773, 496-502. Trans Tech Publications.
  • [37] Wang D., Huang X., Li J., He B., Liu Q., Hu L., & Jiang G., 3D printing of graphene-doped target for “matrix-free” laser desorption/ionization mass spectrometry, Chemical Communications 2018, 54(22), 2723-2726.
  • [38] Melchels F.P., Feijen J., Grijpma D.W., A review on stereolithography and its applications in biomedical engineering, Biomaterials 2010, 31(24), 6121-6130.
  • [39] Lin D., Jin S., Zhang F., Wang C., Wang Y., Zhou C., Cheng G.J., 3D stereolithography printing of graphene oxide reinforced complex architectures, Nanotechnology 2015, 26(43), 434003.
  • [40] Zhou X., Nowicki M., Cui H., Zhu W., Fang X., Miao S., ... & Zhang L.G., 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells, Carbon 2017, 116, 615-624.
  • [41] Udupa G., Rao S.S., Gangadharan K.V., Functionally graded composite materials: an overview, Procedia Materials Science 2014, 5, 1291-1299.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74723b8d-f357-4ce6-aa9d-023070bfa1b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.