Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the extraction and application of cellulose derived from sweet corn stalks (Zea mays saccharata Sturt) as a membrane material for the effective removal of microplastics from wastewater. The extraction process yielded a cellulose recovery of 43% from 100 grams of corn stalk powder, indicating the efficiency of the employed methodology and demonstrating the potential of corn stalks as a viable cellulose source. The extracted cellulose fibers exhibited desirable physical properties, including a rough and porous surface, which are conducive to trapping larger particles, while the pure cellulose displayed a smoother texture that facilitates the filtration of finer microplastics. The performance of the membranes constructed from both corn stalks cellulose and pure cellulose was evaluated through filtration experiments, revealing high efficiencies of 90% and 92.5%, respectively, in removing microplastics from contaminated water. The slight difference in efficiency suggests that the more uniform structure of pure cellulose may provide a more consistent filtration process. Scanning electron microscopy (SEM) analysis confirmed the structural integrity of the membranes, revealing an amorphous structure that is critical for effective filtration. Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS) analyses indicated a higher purity of cellulose in the pure sample, with increased oxygen content correlating with the removal of lignin and hemicellulose. Furthermore, the corn stalks cellulose membrane demonstrated superior operational characteristics, including a higher average flow rate (55 mL/min) and better clogging resistance compared to pure cellulose. These findings highlight the potential of utilizing agricultural waste, such as corn stalks, in the development of sustainable membranes for microplastic pollution mitigation. The study underscores the importance of innovative approaches in environmental remediation and offers valuable insights into the use of renewable materials in wastewater treatment applications. Future research should focus on optimizing processing methods and evaluating long-term performance in real-world scenarios.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
97--103
Opis fizyczny
Bibliogr. 24 poz., rys., tab
Twórcy
autor
- Environmental Chemistry Division, Faculty of Mathematics and Sciences, Udayana University, Jimbaran, Badung-Bali 80361, Indonesia
autor
- Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Bali, Indonesia
autor
- Physical-Chemistry Division, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Bali, Indonesia
Bibliografia
- 1. Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: sources and sinks. Environmental Science & Technology, 45(21), 9175–9179. DOI: 10.1021/es201811s
- 2. Chen, L., & Wang, X. (2022). Microplastic filtration using natural fibers: potential and challenges. Journal of Hazardous Materials, 418, 126232. DOI: 10.1016/j.jhazmat.2021.126232
- 3. Cobbing, M., & Vicaire, Y. (2016). Timeout for fast fashion. (Hamburg: Greenpeace).
- 4. Hubbe, M.A., Rojas, O.J., Lucia, L.A., & Sain, M. (2008). Cellulosic nanocomposites: a review. BioResources, 3(3), 929–980. DOI: 10.15376/ biores.3.3.929-980
- 5. Kamani, H., Ghavebzadeh, M., & Ganji, F. (2024). Characteristics of microplastics in the sludges of wastewater treatment plants. Pollution, 10(2), 653–663. DOI:10.22059/poll.2024.345678.1234
- 6. Karim, Z., Mathew, A.P., Grahn, M., Mouzon, J., & Oksman, K. (2016). Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydrate Polymers, 127, 433–441. DOI: 10.1016/j.carbpol.2015.03.041
- 7. Koszewska, M. (2018). Circular economy—Challenges for the textile and clothing industry. Autex Research Journal, 18(4), 337–347. DOI: 10.1515/ aut-2018-0023
- 8. Kumar, V., Chakraborty, P., Janghu, P., Umesh, M., Sarojini, S., Pasrija, R., Kaur, K., Lakkaboyana, S.K., Sugumar, V., Nandhagopal, M., & Sivalingam, A.M. (2023). Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges. Carbohydrate Polymer Technologies and Applications, 6, 100366. DOI: 10.1016/j.carpta.2023.100366
- 9. Li, F., & Zhang, J. (2022). Natural fiber composites for microplastic filtration: from laboratory to field applications. Environmental Pollution, 287, 117597. DOI: 10.1016/j.envpol.2021.117597
- 10. Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., & Li, L. (2019). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal, 359, 159-167. DOI: 10.1016/j.cej.2018.11.155
- 11. Mohamad, N.A.D., & Jai, J. (2022). Response surface methodology for optimization of cellulose extraction from corn stalks using NaOH-EDTA for pulp and papermaking. Heliyon, 8, e09114. DOI: 10.1016/j.heliyon.2022.e09114
- 12. Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: an overview. Journal of Scientific & Industrial Research, 69(5), 323–329.
- 13. Padam, B.S., Tin, H.S., Chye, F.Y., & Abdullah, M.I. (2014). Banana by-products: an under-utilized renewable food biomass with great potential. Journal of Food Science and Technology, 51(12), 3527–3545. DOI: 10.1007/s13197-012-0861-2
- 14. Pelissari, F.M., Sobral, P.J.A., & Menegalli, F.C. (2014). Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 21(1), 417–432. DOI: 10.1007/s10570-013-0138-6
- 15. Petroody, S.S.A., Hashemi, S.H., & Gestel, C.A.M. (2021). No seasonal differences in the emission of microplastics from an urban wastewater treatment plant on the southern coast of the Caspian Sea. Pollution, 7(2), 405–417. DOI: 10.22059/ poll.2021.317527.938
- 16. Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of The Total Environment, 702, 134455. DOI: 10.1016/j.scitotenv.2019.134455
- 17. Royer, S.J., Ferrón, S., Wilson, S.T., & Karl, D.M. (2018). Production of methane and ethylene from plastic in the environment. PLOS ONE, 13(8), e0200574. DOI: 10.1371/journal.pone.0200574
- 18. Silva, A.B., Bastos, A.S., Justino, C.I.L., da Costa, J.P., Duarte, A.C., & Rocha-Santos, T.A.P. (2018). Microplastics in the environment: Challenges in analytical chemistry—A review. Analytica Chimica Acta, 1017, 1–19. DOI: 10.1016/j.aca.2018.02.043
- 19. Sultan, H.H., Shaker Al-Aadhami, M.A.W.S., & Baqer, N.N. (2023). Detection of microplastics in drinking water treatment plants in Baghdad city/ Iraq. Pollution, 9(4), 1838–1849. DOI: 10.22059/ poll.2023.350123.1234
- 20. Sundt, P., Schulze, P.E., & Syversen, F. (2014). Sources of microplastic pollution to the marine environment. Mepex for the Norwegian Environment Agency, 86.
- 21. Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater?–A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164–172. DOI: 10.1016/j.watres.2016.11.046
- 22. Van, N.T.T., Gaspillo, P., Thanh, H.G.T., Nhi, N.H.T., Long, H.N., Tri, N., Van, N.T.T., Nguyen, T., & Ha, H.K.P. (2022). Cellulose from the corn stalks: optimization of extraction by response surface methodology (RSM) and characterization. Heliyon, 8, e11845. DOI: 10.1016/j.heliyon.2022.e11845
- 23. Zhao, Y., Wu, X., & Zhang, Y. (2022). Cellulose-based fiber membranes for microplastic removal: A review. Environmental Science & Technology Letters, 9(11), 847–858. DOI: 10.1021/acs.estlett.2c00608
- 24. Zubris, K.A.V., & Richards, B.K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138(2), 201–211. DOI: 10.1016/j.envpol.2005.04.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-746dbb06-2341-4830-81c2-6ab0ac4e84c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.