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Abstract. Few aspects of shunting effect have been studied so far. Shunting effect in resistance spot welding (RSW) occurs when the electrical 
current passes through the previous spot welds. Value of this current depends mostly on distance, number, and size of previous spot welds. This 
will cause some dimensional and metallurgical changes in welding nugget as well as heat affected zone (HAZ). In this study, shunting effect 
of RSW is considered by finite element method (FEM) and the results are compared to experiments performed on aluminum alloy 2219. Weld 
spacing together with welding current and time are considered to discover the effect of shunting current in the final quality of nugget. A three 
factor experiment design has been performed to find the significance of factors and interactive effects, as well as finite element model verifica-
tion. Electrothermal and mechanical interactions are considered in the FEM. Experimental and numerical solutions have yielded similar results 
in terms of welding nugget properties. Asymmetry in electrical potential, temperature, stress distribution and geometry of shunted nugget is 
predicted and verified directly or indirectly. Intense effect of shunting current on nugget height, asymmetric growth of heat affected zone (HAZ) 
toward previous welding nugget, as well as concentration of alloying elements along grain boundaries are also discovered.
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Finite element models used to analyze RSW process are not 
readily usable to consider shunting effect, however, there are 
several RSW FEM studies on simulation of thermal and electri-
cal distribution (Huh [8], Archer [9], Greenwood [10], and Tsai 
[11]), prediction of the electrical and thermal contact properties 
and contact radius (Loulou et al. [12], Okuda [9], and Shen et 
al. [13]), growth of nugget and thermal deformations (Nied 
[14], Gould [15]), and electrical-thermal-mechanical analysis 
(Zhang [16] and Kim et al. [17]). Although most of these studies 
have included thermal, electrical and mechanical aspects of the 
RSW process, the asymmetry of shunting configuration due to 
existence of shunting (previous) nugget prohibits the use of 1D 
or 2D axisymmetric models.

In this paper, shunting effect in RSW is investigated using 
FEM and the results are compared with experiments on AA2219. 
The influence of welding distance, current and time are investi-
gated to consider shunting effect in final quality of the nugget. 
Experiments are designed inside the weldability range, while 
the results are compared to results of FEM after verification.

2. Methods

2.1.  Finite Element Analysis 
2.1.1.  Mathematical Equations 

2.1.1.1. Electrical equations
Quasi-Laplace equation of electrical potential is written in 3D 
coordinates as [1]:
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where   is the voltage potential and   is the bulk electrical resistivity. Boundary conditions are 

provided in Table 1 according to Fig. 1. In Table 1,    is the voltage applied on electrode,     is 

the electrical contact resistivity between the electrode and sheet,      is the voltage drop 

between the sheets,     is the electrical contact resistivity between the weldments, and      is 

the voltage drop in shunting nugget. For the application of the alternative current it can be 

assumed that [18]:  
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1. Introduction

Few studies can be found on shunting effect, however, most 
resistance spot welding (RSW) applications comprise multiple 
spots. Intermittent spots change the mechanical and metallur-
gical quality of new spot due to thermal-electrical alternations 
caused by shunting current, passing via the previous spot(s). 
This proves the necessity of shunting effect analysis to op-
timize the adjustable parameters and compensate undesirable 
consequences.

The oldest experimental study of shunting effect was per-
formed by Hard et al. [1] They provided a method for shunting 
path detection. Next studies [2] investigated the effect of sheet 
dimensions, welding distance, electrode geometry, material, and 
electrode force in order to find minimum required distance to 
reduce shunting effect. Howe [3] and Wang et al. [4] tested 
several types of steels and discovered the dominant effect of 
distance and surface conditions in shunting intensity. Senkara 
[5] and Zhang [6] considered mechanical aspects of shunting ef-
fect on crack generation in RSW of AA5754. Although shunting 
current was claimed to be efficient in crack generation, deeper 
investigation seems to be required to discover the effect of other 
parameters such as distance. In the simplified 3D electrother-
mal finite element model designed by Chang [2], voltage and 
temperature distributions were predicted for a shunted nugget. 
In the theoretical model developed by Li et al. [7], minimum 
required distance was obtained, however it was mainly based 
on several geometrical and mathematical simplifications.
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where ϕ is the voltage potential and ρ is the bulk electrical re-
sistivity. Boundary conditions are provided in Table 1 according 
to Fig. 1. In Table 1, ϕe is the voltage applied on electrode, ρES 
is the electrical contact resistivity between the electrode and 
sheet, ΔϕSS is the voltage drop between the sheets, ρSS is the 
electrical contact resistivity between the weldments, and ΔϕSh 
is the voltage drop in shunting nugget. For the application of 
the alternative current it can be assumed that [18]:

2.1.1.2. Thermal equations. Thermal equation is presented in 
(8) [2].
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Fig. 1. Schematics for boundary conditions and important domains 
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where    is the applied eletrical current on electrode and    is the maximum electrical current 

supplied in welding machine. The following equation is used to calculate electrical contact 

resistivity [18]: 
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where   is mass density,   is specific heat capacity,   is thermal conductivity coefficient,   is 

temperature, and   is voltage. Specific heat capacity at melting temperature is given by (9) 

[20]. 
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where D is mass density, c is specific heat capacity, k is thermal 
conductivity coefficient, T is temperature, and ϕ is voltage. Spe-
cific heat capacity at melting temperature is given by (9) [20].
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where Hm is the latent heat (Heat of fusion), Ts is the tempera-
ture at which the melting starts, CTs

 is the specific heat at Ts, 
and c' is the specific heat capacity after phase change. Ther-
mal boundary conditions are provided in Table 2, where kES 
and kSS are thermal contact conductivity (TCC) coefficients of 
electrode-sheet interface and sheets, respectively, ke is thermal 
conductivity coefficient of electrode, TW and TA are water and 
ambient temperature, respectively, hW and hA are thermal con-
vection coefficient of water and ambient, respectively, and n  
is surface normal vector. TCC coefficients are calculated using 
(15) as reported by Zhang and Senkara [21].

Table 1  
Electrical boundary conditions

Boundary Equation

Electrode-sheet Interface [2] (2)

Faying surface [2] (3)

Surfaces exposed to ambient (4)

Perimeter of shunting nugget (5)
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where Ie is the applied eletrical current on electrode and Ip is 
the maximum electrical current supplied in welding machine. 
The following equation is used to calculate electrical contact 
resistivity [18]:
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where Rc(20ºC) is the measured electricl contact resistance 
(ECR) of electrode-sheet interface at 20ºC under constant me-
chanical pressure, Lc is the characteristic thickness of contact 
surfaces (assumed equal to 1×10–4 for certain aluminum al-
loys as reported by Sun [19]), Ac is nominal contact area, and 
σe,ave(T ) and σe,ave(20ºC) are the average yield stress of contact-
ing materials at T  and 20ºC, respectively.

Fig. 1. Schematics for boundary conditions and important domains
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where kc is TCC coefficient, σ is normal stress, σe is yield stress, 
and k1 and k2 are TCC coefficients of contacting parts.

2.1.1.3. Mechanical equations. Incremental elastic-plastic 
equation is used for thermal-mechanical solution [22].
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where {b} and {a} are body force and acceleration vectors re-
spectively [22]. Mechanical boundary conditions are provided 
in Table 3 according to Fig. 1. In Table 3, FE is electrode force, 
and AES is contacting area between electrode and weldment. 
Shunting and welding domains are not considered as free sur-
faces in (20).
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2.1.2. Configuration of the model. To simplify the calcu-
lation process, the previous nugget is defined as a cylindri-
cal connection between the sheets (Fig. 2) and the diameter 
is specified according to the dimensions of an experimental 
nugget, obtained using average welding parameters in single 
spot welding.

Fig. 2. Welding configuration, showing shunting nugget and other parts 
in FEM model

2.1.3. Material properties. Elastic-plastic material is speci-
fied as the type of material for AA2219 (sheets) in the model. 
Table 4 provides important temperature-dependent properties 
of AA2219, while solidus and liquidus temperatures are set at 
543 and 643ºC  respectively [23] and fusion heat is assumed 
389 kJ/kg [24]. Table 5 and 6 provide chemical composition 
and important properties of C15000 (electrodes), respectively.
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Using the method studied by Vogler [26], electrical resistivity of a single spot is measured 

obtaining               and applied to the previous nugget in finite element model, while 

room temperature electrical and thermal properties are assigned to previous nugget since 

there is subtle heat generation in this domain. Elasticity modulus and yield strength were 

determined by performing a micro-hardness test on mounted single nugget by the method 

reported by Jafari et al. [27]. Electrical resistivity, elasticity modulus, and yield strength were 

measured obtaining             ,       , and          respectively. 
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Note: T is temperature in K
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Using the method studied by Vogler [26], electrical resis-
tivity of a single spot is measured obtaining 7.11×10–8 Ω.m and 
applied to the previous nugget in finite element model, while 
room temperature electrical and thermal properties are assigned 
to previous nugget since there is subtle heat generation in this 
domain. Elasticity modulus and yield strength were determined 
by performing a micro-hardness test on mounted single nugget 
by the method reported by Jafari et al. [27]. Electrical resistivi-
ty, elasticity modulus, and yield strength were measured obtain-
ing 7.11×10–8 Ωm, 75GPa, and 342MPa respectively.

Applying the same method used by Vogler [26], sheets and 
electrode-sheet ECR were measured obtaining 6.78×10–5 and 
8.1×10–7 Ω, respectively.

2.2. Experiments. Weldability tests, design of experiment 
(DOE), model verification, and finding the significance of fac-
tors were the main phases of experiments. Principles of coupon 
preparation, inspection of results, as well as preheating and 
welding parameters were excerpted from military and welding 
handbooks [28,29]. 12 kA and 4 cycles1 were chosen for pre-
heating, while off time was 2 cycles. Squeeze and holding force 
were 2 and 3.2 kN respectively. Initial range of welding current, 
time, and force were 22–26 kA, 2–10 cycles, and 2.5–3.2 kN, 
respectively. Electrode was chosen as dome type according to 
previous studies [30, 31] (Fig. 3).

2.2.1. Weldability tests. Weldability window was obtained 
(Fig. 4) after finding allowable electrode force to provide an 
expulsion free nugget diameter between 3.5�ts and 5�ts [28,32], 
where ts is sheet thickness [29].

2.2.2. Significance of factors. A three factor design of exper-
iment (DOE) was performed in a rectangular area inside the 
welding lobe, while welding distance range was set according 
to a previous study by Howe [3] (Table 7). The purpose of per-
forming a DOE on welding parameters (factors) was to check 
the significance of each factor and to set new levels of those fac-
tors for next series of experiments according to the significance 

1Cycles means interval between each period of 50 Hz alternative current 
used on welding machine.

obtained by DOE results. Fig. 5 and 6 show schematic and real 
samples after welding respectively. Spot S1 on all samples was 
welded using average parameters provided in Table 8. After 
welding procedure, the specimens were cut through the spots 
for geometrical and metallurgical considerations.
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results
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significance of each factor and to set new levels of those factors for next series of experiments 

according to the significance obtained by DOE results. Fig. 5 and 6 show schematic and real 

samples after welding respectively. Spot    on all samples was welded using average 

parameters provided in Table 8. After welding procedure, the specimens were cut through the 

spots for geometrical and metallurgical considerations.  

 
Fig. 4. Weldability region obtained by numerical and experimental results 

 
Table 7 Chosen range of welding current and time for DOE phase. 

Parameter Min Max 
Welding Current (kA) 22.5 26.7 
Welding time (cycles) 2 6 
Weld spacing (mm) 5 20 

 

 

Table 8. Average welding parameters for spot    
Current (kA) Welding time (cycles) Force (kN) 

24 4 2.9 
 

 

 
Fig. 5. Arrangement of spots for DOE; S is distance (dimensions in mm) 
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3. Results and discussion

3.1. Comparison of experimental and numerical results. 
Subsections explain the effect of welding current, distance, 
and time on nugget diameter and height – numerically and ex-
perimentally.
3.1.1. Effect of welding parameters on nugget diameter. As 
seen in Fig. 7, increasing welding current has increased nugget 
diameter while the interactive effect of welding current and 
distance is observed as larger current has reduced distance ef-
fect on nugget diameter growth. The main reason could be the 
adequacy of applied welding current to produce maximum weld 
nugget diameter according to the contacting area; in these cir-
cumstances, increasing distance cannot have a significant effect 
on the reduction of shunting effect.

Direct relationship of time and diameter can be observed in 
Fig. 8; however, the gradient is smaller than curves in Fig. 7, 
which indicates the subtle effect of time. Shunting effect can 
also be observed in Fig. 8, although the difference of two dis-
tances is not significant as compared to Fig. 7. Interactive effect 
of welding time and distance can be observed since increasing 
distance provides more current on contact area, therefore nug-
get size approaches to maximum values quickly, i.e., welding 
time is not capable of increasing the size significantly in long 
welding distances.

Table 7  
Chosen range of welding current and time for DOE phase

Parameter Min Max

Welding Current (kA) 22.5 26.7
Welding time (cycles) 2 6
Weld spacing (mm) 5 20

Table 8.  
Average welding parameters for spot S1

Current (kA) Welding time (cycles) Force (kN)

24 4 2.9

Fig. 5. Arrangement of spots for DOE; S is distance (dimensions in mm)

Fig. 7. Diameter-distance diagram for experimental and numerical 
results for 22.5 and 26.7 kA welding current, and 4 cycles welding 

time

Fig. 8. Diameter-time diagram for experimental and numerical results 
for 5 and 10 mm welding distance, and 23.9 kA welding current

Fig. 6. Welded specimens
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welding current to produce maximum weld nugget diameter according to the contacting area; 
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Direct relationship of time and diameter can be observed in Fig. 8; however, the gradient is 

smaller than curves in Fig. 7, which indicates the subtle effect of time. Shunting effect can also 

be observed in Fig. 8, although the difference of two distances is not significant as compared to 

Fig. 7. Interactive effect of welding time and distance can be observed since increasing distance 

provides more current on contact area, therefore nugget size approaches to maximum values 

quickly, i.e., welding time is not capable of increasing the size significantly in long welding 

distances. 

 
Fig. 8. Diameter-time diagram for experimental and numerical results for 5 and 10 mm welding distance, and 23.9 

kA welding current 

3.1.2. Effect of welding parameters on nugget height 
The important difference between Fig. 9 and 7 comes from a less interactive effect of numerical 

results in Fig. 9. Both curves have close gradient however distance is still efficient on reduction 

of shunting current. Furthermore, numerical results in Fig. 9 prove the considerable effect of 

welding current on nugget height, as maximum height difference is about 0.8 mm. 

3.1.2. Effect of welding parameters on nugget height. The 
important difference between Fig. 9 and 7 comes from a less in-
teractive effect of numerical results in Fig. 9. Both curves have 
close gradient however distance is still efficient on reduction of 
shunting current. Furthermore, numerical results in Fig. 9 prove 
the considerable effect of welding current on nugget height, as 
maximum height difference is about 0.8 mm.
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Fig. 9. Height-distance diagram for experimental and numerical results 
with 4 cycles welding time
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Fig. 9. Height-distance diagram for experimental and numerical results with 4 cycles welding time  

3.2.1. Predicted voltage distribution 
By comparing Fig. 10 and 11, the asymmetry of equipotential lines caused by shunting current is 

clearly observed for adjacent welding spots versus single spot. The main reason is the 

difference of electrical resistance between faying surface and previous spot (shunting spot). 

The asymmetry reduces for larger distances (Fig. 11b) due to reduction of shunting current. 

 
Fig. 10. Predicted equipotential lines during the application of welding current for single spot, with 25.3 kA welding 
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3.2.1. Predicted voltage distribution. By comparing Fig. 10 
and 11, the asymmetry of equipotential lines caused by shunt-
ing current is clearly observed for adjacent welding spots ver-
sus single spot. The main reason is the difference of electrical 
resistance between faying surface and previous spot (shunting 
spot). The asymmetry reduces for larger distances (Fig. 11b) 
due to reduction of shunting current.
3.2.2. Predicted temperature distribution. Equally distant 
temperature rates of HAZ locations have coincided with each 
other in Fig. 12 for single spot, while they are asymmetric for 
double spot (specially for x = ±3mm in Fig. 13). Asymmetry 
of curves has decreased for longer distance (Fig. 13a and 13b). 
Therefore, increasing distance increases the symmetry of HAZ 
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heating/cooling rates. In addition, Comparing diagrams (a) and 
(b) in Fig. 13 proves two contradictory effects. Changing the 
distance from 5 to 20 mm yields to a temperature difference of 
500 and 600 K, respectively, between 11 to 15 cycles at x = 0 
while it is decreased for HAZ. The main reason is the reduc-
tion of shunting effect in longer distances, which enhances the 
heat generation at faying surface. Heating rates are identical 
for both distance in Fig. 14.1, while they differ significantly in 
cooling rates between nuggets in Fig. 14.2. This is an import-
ant reason behind the tendency of HAZ geometry toward the 

shunting nugget. This issue is further discussed in section 3.2 
and compared with micrographs.
3.2.3. Predicted stress distribution. Fig. 15 indicates predicted 
deformations and stress distributions. Shunting spot behaves 
as a barrier in front of deviations of sheets. This constraint has 
become weaker for longer distance (Fig. 15b). As a general rule, 
increasing welding distance adds to deformation and deviation 
of sheets, whereas it reduces stress value between the spots. 
This is a reasonable result since the shunting nugget acts as 
a mechanical constraint.

Fig. 14. Predicted temperature distribution (1) during welding current application, and (2) after removing welding current, for (a) 5, and (b) 20 
mm weld spacing, with 25.3 kA welding current, in shunted spot weld

Fig. 15. Predicted stress distribution and deformations during the application of welding force at faying surface of shunted spot, with 23.5 kA 
welding current and 6 cycles welding time for (a) 5 and (c) 20 mm (magnification of deformation = 20x)
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3.2. Nugget dimensions. Micrograph and dimensions of shunted 
nuggets are considered and compared to numerically predicted 
dimensions. Comparison of Fig. 16a and 16b indicates the reduc-
tion of nugget size, while HAZ size has grown toward previous 
spot due to shunting effect. This means a larger part of thermal 
energy is used for generating HAZ rather than nugget, while the 
size of HAZ in Fig. 16b is not considerable comparing to nugget 
dimensions. The same conclusion is true for Fig. 17, however 
the asymmetry is clearer here. In other words, the tendency of 
HAZ toward the previous spot is stronger than in Fig. 16; this 
is due to higher welding current and heat generation. Although 
welding distance in Fig. 16b and 17b is 20 mm, shunting effect 
is not observable due to weak shunting current for this distance.

Overall, Figs. 16 and 17 indicate the stronger effect of 
shunting current on reduction of nugget height than that of its 
diameter. This is also proved by numerical results as reduction 
in nugget height is easily comparable in Fig. 18a and 18b. In 
addition, extending HAZ toward the shunting welding nugget 

rather than the opposite side is reasonably proved by comparing 
numerical (Fig. 13 and 14) and experimental (Fig. 16 and 17) 
results, as it is numerically predicted in the form of temperature 
distribution required to generate HAZ.
3.3. Microstructure. The most important result drawn from 
SEM images concerns the segregation of alloying elements 
along grain boundaries, which is severe in HAZ. Segregation 
is intensified by increasing welding distance, as seen in Fig. 19 
and 20. White areas indicate the concentration of alloying ele-
ments. Significance of concentration for 5 mm welding distance 
is higher than 20 mm. The same result is observed for segrega-
tion of copper in Fig. 21. Bright particles are representative of 
copper element in Fig. 21. It could be interpreted as the negative 
effect of shunting current on HAZ. In fact, shunting current has 
increased the nonuniformity of distribution of elements over 
HAZ. The main reason can be a rise of heat in HAZ acquired 
by shunting current which did not melt the HAZ, but altered 
the microstructure in a negative way.

Fig. 16. Section of welding nugget produced by 22.5 kA welding current, 6 cycles welding time, and (a) 5, (b) 20 mm weld 
spacing (magnifications: macrostructure 25 x, microstructures 500 x; dashed curve is the approximate border of nugget and HAZ)

Fig. 17. Section of welding nugget produced by 25.3 kA welding current, 6 cycles welding time, and (a) 5, (b) 20 mm weld 
spacing (magnifications: macrostructure 25 x, microstructures 500 x; dashed curve is the approximate border of nugget and HAZ)

Fig. 18. Maximum predicted liquid phase ratio before removing welding current, for 25.3 kA welding current and 6 cycles 
welding time for (a) 5, (b) 20 mm welding distance
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4. Conclusion

Shunting effect in resistance spot welding of 1 mm AA2219 
sheets was considered experimentally and numerically using 
a finite element model for two adjacent spots. Weld spacing 
together with welding current and time were considered in 
a three factor DOE in experimental phase, while temperature 

dependence of material properties was respected in FEM. 
The following conclusions are drawn from the investigation 
of results:

● Numerical and experimental results are in appropriate 
agreement; however, some discrepancies are observed 
due to small difference between real and defined values 
of contact and shunting nugget properties.

Fig. 19. SEM photo for the nugget section made by 25.3 kA welding current, 6 cycles welding time, and (a) 5, (b) 20 
mm welding distance, with 500 x magnification

Fig. 20. SEM photo for the nugget section made by 25.3 kA welding current, 6 cycles welding time, and (a) 5, (b) 20 
mm welding distance, with 1000 x magnification

Fig. 21. Copper distribution in HAZ, made by 25.3 kA welding current, 6 cycles welding time, and (a) 5, (b) 20 mm 
welding distance, with 2000 x magnification
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● Distance effect was clearly observable on nugget size for 
experimental and numerical results. The main reason is 
the reduction of shunting current by increasing distance.

● The interactive effect of welding current and distance 
was clearly observed for diameter but it was very subtle 
for height.

● Voltage distribution prediction proved the effect of shunt-
ing on reduction of generated voltage at faying surface 
due to higher electrical conductance of shunting nugget.

● Stress distribution analysis indicated the effect of shunt-
ing spot on deviations and generated stress between spots. 
Increasing weld spacing reduced the maximum value of 
distributed stress, whereas it increased the deviation and 
separation of sheets between spots.

● Experimental and numerical investigation of nugget sec-
tion proved the effect of shunting on nugget dimensions, 
particularly on height. Furthermore, HAZ asymmetry was 
observed in micrographs for shorter distances, while it 
was predicted by numerical results in the form of asym-
metry in temperature values and cooling rates between 
spots.

● SEM images indicated the effect of shunting current on 
segregation and concentration of alloying elements along 
the boundaries of grains, particularly on HAZ domain.
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