PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending Moment Control and Weight Optimization in Space Structures by Adding Extra Members in the Optimal locations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the reduction of bending moment in critical members by adding some extra members in the optimum location. Instead of enlarging the size of members to resist the moment, eight additional members are added in the optimum location to reduce the bending moment in the critical members. The total weight of the proposed structure with extra members is less than that of the original structure that resists the induced bending moment. Moreover, the location of the additional bars significantly reduces the nodal displacements. This paper investigates the effect of placing extra members on vertically and/or horizontally loaded egg-shaped single-layer frames. An egg-shaped structure is designed based on the maximum induced moment; in such frames, the bending moment is the dominant internal force. Then some extra members are suggested to be added to the structure to reduce the maximum bending moment to the lowest possible value; thus, the designed cross-sectional area is minimized. Furthermore, the optimized structure's total weight and shape deformation is less than the ordinary structure's. The study results show that the extra bars' location depends on the loadings' direction. Moreover, the weight of the horizontally loaded egg-shaped structure can be optimized by up to 28%. The results were verified by MATLAB and SAP2000 software.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Civil Engineering Department, University of Raparin, Rania, Kurdistan Region, Iraq
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • 1. Sutter, G. and Jäger, P., Egg-shaped anaerobic digesters, Taiwan. Structural Engineering International, 1994; 4(3): 160-163. https://doi. org/10.2749/101686694780601999
  • 2. Winterstetter, T., et al., Innovative Bautechnik im Herzen Asiens–die EXPO 2017 in Astana, Kasachstan. ce/papers, 2018; 2(1): 51-57. https://doi. org/10.1002/cepa.630
  • 3. Bechmann, R., et al., Eine runde Sache: Stahl‐Glas Tragwerke für die EXPO 2017 in Astana. Stahlbau, 2019; 88(1): 57-63. https://doi.org/10.1002/ stab.201800022
  • 4. Richard, B., Las Vegas: past, present and future. Journal of Tourism Futures, 2018.
  • 5. Chang, X. and Haiyan, X. Using sphere parameters to detect construction quality of spherical buildings. in 2nd International Conference on Advanced Computer Control. Shenyang, China, 2010 https://doi. org/10.1109/ICACC.2010.5487073
  • 6. Manguri, A., et al., Optimal reshaping and stress control of double-layer spherical structures under vertical loadings. Archives of Civil Engineering, 2022; 68(4). https://doi.org/10.24425/ace.2022.143056
  • 7. Gordo, J. and Soares, C.G., Experimental analysis of the effect of frame spacing variation on the ulti- mate bending moment of box girders. Marine Structures, 2014; 37: 111-134. https://doi.org/10.1016/j. marstruc.2014.03.003
  • 8. Bai, Y., Shi, Y., and Deng, K., Collapse analysis of high-rise steel moment frames incorporating deterioration effects of column axial force–bending moment interaction. Engineering Structures, 2016; 127: 402-415. https://doi.org/10.1016/j. engstruct.2016.09.005
  • 9. Chen, W.F. and Lui, E.M., Handbook of structural engineering. CRC press, 2005.
  • 10. Meek, J. and Tan, H.S., Geometrically nonlinear analysis of space frames by an incremental iterative technique. Computer methods in applied mechanics engineering Structures, 1984; 47(3): 261-282. https://doi.org/10.1016/0045-7825(84)90079-3
  • 11. Correia, A.A. and Virtuoso, F.B. Nonlinear analysis of space frames. in III European Conference on Computational Mechanics. 2006 107-107. https:// doi.org/10.1007/1-4020-5370-3_107
  • 12. Saeed, N., et al., Non-Linear Analysis of Structures Utilizing Load-Discretization of Stiffness Matrix Method with Coordinate Update. Applied Sciences, 2022; 12(5): 2394.
  • 13. Wang, D., Optimal shape design of a frame structure for minimization of maximum bending moment. Engineering structures, 2007; 29(8): 1824-1832. https://doi.org/10.1016/j.engstruct.2006.10.004
  • 14. Manguri, A., Saeed, N., and Haydar, B. Optimal Shape Refurbishment of Distorted Dome Structure with Safeguarding of Member Stress. in 7th International Engineering Conference “Research & Innovation amid Global Pandemic”(IEC). Erbil, Iraq, 2021 90-95. https://doi.org/10.1109/ IEC52205.2021.9476107
  • 15. Saeed, N., Manguri, A., and Al-Zahawi, S. Optimum Geometry and stress control of deformed double layer dome for gravity and lateral loads. In: 7th International Engineering Conference Research & Innovation amid Global Pandemic (IEC). Erbil, Iraq, 2021, 84-89. https://doi.org/10.1109/ IEC52205.2021.9476094
  • 16. Saeed, N., et al. Shape restoration of deformed egg-shaped single layer space frames. In: International Conference on Advanced Science and Engineering (ICOASE). Duhok, Kurdistan Region, Iraq, 2019, 220-225. http://dx.doi.org/10.1109/ ICOASE.2019.8723714
  • 17. Kwan, A. and Pellegrino, S., Prestressing a space structure. AIAA journal, 1993; 31(10): 1961-1963. https://doi.org/10.2514/3.11876
  • 18. Kaveh, A., Optimal structural analysis. John Wiley & Sons, 2014.
  • 19. Christensen, P.W. and Klarbring, A., An introduction to structural optimization. Vol. 153. Springer Science & Business Media, 2008.
  • 20. Spillers, W.R. and MacBain, K.M., Structural optimization. Springer Science & Business Media, 2009.
  • 21. Haftka, R.T. and Gürdal, Z., Elements of structural optimization. Vol. 11. Springer Science & Business Media, 2012.
  • 22. Mai, H.T., et al., A novel deep unsupervised learning-based framework for optimization of truss structures. Engineering with Computers, 2022: 1-24. https://doi.org/10.1007/s00366-022-01636-3
  • 23. Nguyen-Van, S., et al., A novel hybrid differentia evolution and symbiotic organisms search algorithm for size and shape optimization of truss structures under multiple frequency constraints. Expert Systems with Applications, 2021; 184: 115534. https://doi.org/10.1016/j.eswa.2021.115534
  • 24. Lewiński, T., et al., Topology optimization in structural mechanics. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013; (1).
  • 25. Nowak, M. and Boguszewski, A., Topology optimization without volume constraint–the new paradigm for lightweight design. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2021.
  • 26. Manguri, A., et al., Optimum number of actuators to minimize the cross-sectional area of prestressable cable and truss structures. Structures, 2023; 47: 2501-2514. https://doi.org/10.1016/j. istruc.2022.12.031
  • 27. Bojczuk, D. and Rębosz-Kurdek, A., Topology optimization of trusses using bars exchange method. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2012; 60(2): 185-189.
  • 28. Brütting, J., Senatore, G., and Fivet, C., MILP- based discrete sizing and topology optimization of truss structures: new formulation and benchmarking. Structural and Multidisciplinary Optimization, 2022; 65(10): 277. 10.1007/s00158-022-03325-7
  • 29. Carvalho, J.P., et al., Simultaneous sizing, shape, and layout optimization and automatic member grouping of dome structures. Structures, 2020; 28: 2188- 2202. https://doi.org/10.1016/j.istruc.2020.10.016
  • 30. Kaveh, A. and Ilchi Ghazaan, M., Optimal seismic design of 3D steel frames, in meta-heuristic algorithms for optimal design of real-size structures. 2018, Springer. p. 139-155.
  • 31. Kaveh, A. and Ilchi Ghazaan, M., Optimal Design of Dome-Shaped Trusses, in Meta-heuristic Algorithms for Optimal Design of Real-Size Structures. 2018, Springer. p. 101-122.
  • 32. Mojtabaei, S.M., Becque, J., and Hajirasouliha, I., Structural size optimization of single and built-up cold-formed steel beam-column members. Journal of Structural Engineering, 2021; 147(4).
  • 33. Peng, B., et al., Cost-based optimization of steel frame member sizing and connection type using dimension increasing search. Optimization Engineering Structures, 2022; 23(3): 1525-1558. https://doi. org/10.1007/s11081-021-09665-5
  • 34. Krishna, M. and Arunakanthi, D.E., Optimum location of different shapes of shear walls in unsymmetrical high rise buildings. International Journal of Engineering Research Technology, 2014; 3(9): 1099-1106.
  • 35. Al-Askari, A.N.A. and Rao, N.R., Study on the optimum location and type of shear wall in u-shape building under different types of soils. International Journal of Scientific Engineering and Technology Research, 2014.
  • 36. Alhorani, R.A., Mathematical models for the optimal design of I-and H-shaped crane bridge girders. Asian ournal of Civil Engineering, 2020; 21(4): 707-722. https://doi.org/10.1007/s42107-020-00232-4
  • 37. Jha, B.K. and Bhanja, S., Optimum design of reinforced concrete sections in flexure and shortcomings of prescriptive method of design. Asian Journal of Civil Engineering, 2021; 22(4): 769-787. https:// doi.org/10.1007/s42107-020-00346-9
  • 38. Shahrouzi, M. and Farah-Abadi, H., Optimal seismic design of steel moment frames by un-damped multi-objective vibrating particles system. Asian Journal of Civil Engineering, 2018; 19(7): 877-891. https://doi.org/10.1007/s42107-018-0070-z
  • 39. Yuan, S. and Jing, W., Optimal Shape Adjustment of Large High-Precision Cable Network Structures. AIAA Journal, 2021; 59(4): 1441-1456. https://doi. org/10.2514/1.J059989
  • 40. Saeed, N.M., Manguri, A.A.H., and Adabar, A.M., Shape and force control of cable structures with minimal actuators and actuation. International Journal of Space Structures, 2021; 36(3): 241-248. https://doi.org/10.1177/09560599211045851
  • 41. Saeed, N.M., et al., Static Shape and Stress Control of Trusses with Optimum Time, Actuators and Actuation. International Journal of Civil Engineering, 2023; 21(3): 379-390. http://dx.doi.org/10.1007/ s40999-022-00784-3
  • 42. Saeed, N., et al., Using Minimum Actuators to Control Shape and Stress of a Double Layer Spherical Model Under Gravity and Lateral Loadings. Advances in Science and Technology Research Journal, 2022; 16(6): 1-13. 10.12913/22998624/155214
  • 43. Manguri, A., et al., Buckling and shape control of prestressable trusses using optimum number of actuators. Scientific Reports, 2023; 13(1): 3838. http:// dx.doi.org/10.1038/s41598-023-30274-y
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-746725f6-cb6e-457d-800b-968268d29479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.